Few-shot image classification based on gradual machine learning

弹丸 计算机科学 人工智能 图像(数学) 一次性 模式识别(心理学) 机器学习 计算机视觉 材料科学 机械工程 工程类 冶金
作者
Na Chen,Xianming Kuang,Feiyu Liu,Kehao Wang,Lijun Zhang,Qun Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124676-124676
标识
DOI:10.1016/j.eswa.2024.124676
摘要

Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples. The state-of-the-art solutions are built by deep learning, which focuses on designing increasingly complex deep backbones. Unfortunately, the task remains very challenging due to the difficulty of transferring the knowledge learned in training classes to new ones. In this paper, we propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML). It begins with only a few labeled observations, and then gradually labels target images in the increasing order of hardness by iterative factor inference in a factor graph. Specifically, our proposed solution extracts indicative feature representations by deep backbones, and then constructs both unary and binary factors based on the extracted features to facilitate gradual learning. The unary factors are constructed based on class center distance in an embedding space, while the binary factors are constructed based on k-nearest neighborhood. We have empirically validated the performance of the proposed approach on benchmark datasets by a comparative study. Our extensive experiments demonstrate that the proposed approach can improve the SOTA performance by 1%–5% in terms of accuracy. More notably, it is more robust than the existing deep models in that its performance can consistently improve as the size of query set increases while the performance of deep models remains essentially flat or even becomes worse.The source code for the proposed method is available at https://github.com/chn05/FSIC_GML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
漂亮的含之完成签到,获得积分10
2秒前
祁尒完成签到,获得积分10
2秒前
高兴璎完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
orixero应助满满采纳,获得10
5秒前
6秒前
风雨无阻完成签到,获得积分10
6秒前
tt完成签到,获得积分10
6秒前
爱学习的GGbond完成签到,获得积分10
6秒前
7秒前
罗浩完成签到,获得积分10
7秒前
7秒前
科研通AI5应助高兴璎采纳,获得10
7秒前
8秒前
优美酸奶完成签到,获得积分10
8秒前
8秒前
Lelym完成签到,获得积分10
8秒前
8秒前
NexusExplorer应助帅宝采纳,获得10
9秒前
勤奋酒窝发布了新的文献求助30
9秒前
Hello应助缥缈灵松采纳,获得10
10秒前
彭哒哒发布了新的文献求助10
11秒前
优雅松鼠发布了新的文献求助10
11秒前
Li发布了新的文献求助10
11秒前
zjujirenjie发布了新的文献求助10
13秒前
13秒前
13秒前
15秒前
书生发布了新的文献求助20
16秒前
16秒前
17秒前
方方发布了新的文献求助10
19秒前
19秒前
想个名字发布了新的文献求助10
20秒前
20秒前
11完成签到,获得积分10
20秒前
NexusExplorer应助iuv采纳,获得10
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462