Few-shot image classification based on gradual machine learning

弹丸 计算机科学 人工智能 图像(数学) 一次性 模式识别(心理学) 机器学习 计算机视觉 材料科学 机械工程 工程类 冶金
作者
Na Chen,Xianming Kuang,Feiyu Liu,Kehao Wang,Lijun Zhang,Qun Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124676-124676
标识
DOI:10.1016/j.eswa.2024.124676
摘要

Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples. The state-of-the-art solutions are built by deep learning, which focuses on designing increasingly complex deep backbones. Unfortunately, the task remains very challenging due to the difficulty of transferring the knowledge learned in training classes to new ones. In this paper, we propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML). It begins with only a few labeled observations, and then gradually labels target images in the increasing order of hardness by iterative factor inference in a factor graph. Specifically, our proposed solution extracts indicative feature representations by deep backbones, and then constructs both unary and binary factors based on the extracted features to facilitate gradual learning. The unary factors are constructed based on class center distance in an embedding space, while the binary factors are constructed based on k-nearest neighborhood. We have empirically validated the performance of the proposed approach on benchmark datasets by a comparative study. Our extensive experiments demonstrate that the proposed approach can improve the SOTA performance by 1%–5% in terms of accuracy. More notably, it is more robust than the existing deep models in that its performance can consistently improve as the size of query set increases while the performance of deep models remains essentially flat or even becomes worse.The source code for the proposed method is available at https://github.com/chn05/FSIC_GML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
壮观以松完成签到,获得积分10
4秒前
Hello应助俭朴的碧玉采纳,获得30
4秒前
4秒前
xxxx完成签到,获得积分10
4秒前
5秒前
杆杆发布了新的文献求助10
5秒前
Csy完成签到,获得积分10
7秒前
加布发布了新的文献求助10
7秒前
LYB吕发布了新的文献求助10
7秒前
打打应助XRT采纳,获得10
8秒前
小黑妞完成签到,获得积分10
8秒前
让地球种满香菜完成签到,获得积分10
8秒前
wxd发布了新的文献求助10
8秒前
9秒前
昵称完成签到,获得积分10
9秒前
9秒前
梨懵懵应助zzz采纳,获得10
10秒前
思思完成签到,获得积分10
10秒前
摸电门的猫完成签到,获得积分10
11秒前
12秒前
小白菜完成签到,获得积分10
13秒前
拼命十三娘完成签到,获得积分10
13秒前
拾忆完成签到,获得积分10
13秒前
ChatGPT发布了新的文献求助10
13秒前
充电宝应助优秀的莹采纳,获得10
17秒前
拾忆发布了新的文献求助10
18秒前
小白完成签到,获得积分10
18秒前
善学以致用应助思思采纳,获得10
19秒前
19秒前
minmi发布了新的文献求助20
20秒前
婷婷应助科研小白采纳,获得10
20秒前
冰千蕙完成签到,获得积分10
21秒前
21秒前
24秒前
斯文败类应助SAINT采纳,获得10
25秒前
Owen应助CrysField采纳,获得10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
School Psychology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4027345
求助须知:如何正确求助?哪些是违规求助? 3566919
关于积分的说明 11353015
捐赠科研通 3298047
什么是DOI,文献DOI怎么找? 1816134
邀请新用户注册赠送积分活动 890569
科研通“疑难数据库(出版商)”最低求助积分说明 813692