小桶
神经保护
微泡
缺血
基因表达
转录组
小RNA
缺血预处理
生物
下调和上调
脑缺血
基因
生物信息学
药理学
医学
内科学
生物化学
作者
He Li,Xiaoxi Zhang,Hongye Xu,Hanchen Liu,Yongxin Zhang,Lei Zhang,Yu‐Dong Zhou,Yongwei Zhang,Jianmin Liu,Jing Mei,Ping Zhang,Pengfei Yang
出处
期刊:Heliyon
[Elsevier BV]
日期:2024-08-01
卷期号:10 (16): e35936-e35936
标识
DOI:10.1016/j.heliyon.2024.e35936
摘要
AimsCerebral ischemic preconditioning is a neuroprotective therapy against cerebral ischemia and ischemia-reperfusion injury. This study aims to demonstrate the alternation of gene expression in exosomes from brain tissue of mice after ischemic preconditioning and their potential functions.MethodsTen mice were divided into the sham and the cerebral ischemic preconditioning groups. Their brain tissues were harvested, from which the exosomes were extracted. The characteristics and protective effects of exosomes were evaluated. Whole transcriptome sequencing was used to demonstrate the gene expression discrepancy between the exosomes from the two groups of mice brains. Volcano graphs and heatmaps were used to picture the difference in expression quantity of mRNA, lncRNA, and circRNA. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to demonstrate the functions of differentially expressed RNAs.ResultsExosomes were successfully extracted, and those from the cerebral ischemic preconditioning group had better protective effects on cells that received oxygen-glucose deprivation and restoration injury. A total of 306 mRNAs and 374 lncRNAs were significantly upregulated, and 320 mRNAs and 405 lncRNAs were significantly downregulated in the preconditioning group. No circRNAs were differentially expressed between the two groups. GO and KEGG pathway analysis indicated that the functions of differentially expressed RNAs were related to both neural protective and injurious effects.ConclusionThe brain-derived exosomes may participate in the neuroprotective effect of cerebral ischemic preconditioning. Thorough research is necessary to investigate exosome functions derived from the ischemic preconditioned brain.
科研通智能强力驱动
Strongly Powered by AbleSci AI