Cross-task and cross-domain SAR target recognition: A meta-transfer learning approach

计算机科学 元学习(计算机科学) 学习迁移 人工智能 合成孔径雷达 任务(项目管理) 机器学习 鉴别器 多任务学习 一般化 模式识别(心理学) 领域(数学分析) 电信 探测器 数学分析 经济 管理 数学
作者
Yukun Zhang,Xiansheng Guo,Henry Leung,Lin Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:138: 109402-109402 被引量:29
标识
DOI:10.1016/j.patcog.2023.109402
摘要

Meta learning and transfer learning offer promising solutions to the problem of requiring large amounts of data in deep learning approaches for synthetic aperture radar (SAR) target recognition. To improve their performance further, we propose a novel Meta-transfer learning approach for cross-task and cross-domain SAR target recognition (MetraSAR). In the meta training phase, we train a robust meta learner with the human-like ability to master new knowledge quickly across tasks and domains. By designing the weighted classification loss with class weights, we conduct hard class mining that forces the meta learner to grow stronger. In addition to the external knowledge transfer across different tasks, we achieve the internal transfer across domains by using the domain confusion loss with a domain discriminator. To balance the two designed loss terms, we adopt the multi-gradient descent algorithm to optimize the meta learner adaptively. In the meta testing phase, the trained robust meta learner is transferred to solve the new task with few shot samples and a quick generalization. Extensive experiments on the moving and stationary target acquisition and recognition (MSTAR) dataset validate that MetraSAR has better performance than conventional SAR target recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
imchenyin完成签到,获得积分0
3秒前
所所应助HM采纳,获得10
4秒前
自然秋柳完成签到 ,获得积分10
4秒前
Smartan完成签到,获得积分10
4秒前
bkagyin应助lt采纳,获得10
4秒前
李爱国应助弓長玉王令采纳,获得10
5秒前
爆米花应助超帅怜阳采纳,获得10
5秒前
万物更始完成签到,获得积分10
6秒前
隐形的傲易完成签到 ,获得积分10
6秒前
7秒前
只爱吃肠粉完成签到 ,获得积分10
11秒前
海纳百川完成签到,获得积分10
12秒前
13秒前
14秒前
高高菠萝完成签到 ,获得积分10
14秒前
Mottri发布了新的文献求助10
14秒前
15秒前
超帅怜阳发布了新的文献求助10
18秒前
lt发布了新的文献求助10
18秒前
19秒前
BBL完成签到 ,获得积分10
19秒前
19秒前
lf发布了新的文献求助10
20秒前
SYLH应助忍忍采纳,获得10
20秒前
SYLH应助忍忍采纳,获得10
20秒前
SYLH应助忍忍采纳,获得10
20秒前
脑洞疼应助可靠月亮采纳,获得10
22秒前
完美世界应助超帅怜阳采纳,获得10
22秒前
科研小垃圾完成签到,获得积分20
23秒前
望向天空的鱼完成签到 ,获得积分10
28秒前
32秒前
昏睡的蟠桃应助tanglu采纳,获得261
34秒前
桐桐应助明月采纳,获得10
35秒前
37秒前
万能图书馆应助Nathan采纳,获得10
40秒前
CipherSage应助典雅的纸飞机采纳,获得10
40秒前
ck发布了新的文献求助10
42秒前
熊猫完成签到 ,获得积分10
43秒前
zhangjianzeng发布了新的文献求助10
44秒前
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Statistical Analysis of Resistance of Reinforced and Prestressed Concrete Members 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3944300
求助须知:如何正确求助?哪些是违规求助? 3489277
关于积分的说明 11051202
捐赠科研通 3220170
什么是DOI,文献DOI怎么找? 1779860
邀请新用户注册赠送积分活动 865008
科研通“疑难数据库(出版商)”最低求助积分说明 799802