A deep reinforcement learning based distributed control strategy for connected automated vehicles in mixed traffic platoon

计算机科学 强化学习 流量(计算机网络) 一般化 弹道 车头时距 控制(管理) 人工智能 模拟 数学 计算机网络 天文 物理 数学分析
作者
Haotian Shi,Danjue Chen,Nan Zheng,Xin Wang,Yang Zhou,Bin Ran
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:148: 104019-104019 被引量:49
标识
DOI:10.1016/j.trc.2023.104019
摘要

This paper proposes an innovative distributed longitudinal control strategy for connected automated vehicles (CAVs) in the mixed traffic environment of CAV and human-driven vehicles (HDVs), incorporating high-dimensional platoon information. For mixed traffic, the traditional CAV control method focuses on microscopic trajectory information, which may not be efficient in handling the HDV stochasticity (e.g., long reaction time; various driving styles) and mixed traffic heterogeneities. Different from traditional methods, our method, for the first time, characterizes consecutive HDVs as a whole (i.e., AHDV) to reduce the HDV stochasticity and utilize its macroscopic features to control the following CAVs. The new control strategy takes advantage of platoon information to anticipate the disturbances and traffic features induced downstream under mixed traffic scenarios and greatly outperforms the traditional methods. In particular, the control algorithm is based on deep reinforcement learning (DRL) to fulfill car-following control efficiency and further address the stochasticity for the aggregated car following behavior by embedding it in the training environment. To better utilize the macroscopic traffic features, a general platoon of mixed traffic is categorized as a CAV-HDVs-CAV pattern and described by corresponding DRL states. The macroscopic traffic flow properties are built upon the Newell car-following model to capture the characteristics of aggregated HDVs' joint behaviors. Simulated experiments are conducted to validate our proposed strategy. The results demonstrate that the proposed control method has outstanding performances in terms of oscillation dampening, eco-driving, and generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
helen完成签到,获得积分10
2秒前
桐桐应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
典雅问寒应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Phil应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
典雅问寒应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助犹豫的夏波采纳,获得10
5秒前
9秒前
动漫大师发布了新的文献求助10
10秒前
10秒前
15秒前
c—137Morty发布了新的文献求助10
16秒前
打打应助xc采纳,获得10
18秒前
wanghuihui完成签到,获得积分20
19秒前
犹豫的夏波关注了科研通微信公众号
20秒前
21秒前
wanghuihui发布了新的文献求助10
21秒前
小魏完成签到,获得积分10
23秒前
26秒前
26秒前
科研通AI5应助斯文的夜雪采纳,获得10
27秒前
体贴半仙发布了新的文献求助10
27秒前
星星完成签到 ,获得积分10
28秒前
29秒前
29秒前
灵巧觅山发布了新的文献求助30
30秒前
蟹浦肉完成签到,获得积分10
31秒前
31秒前
yang发布了新的文献求助10
32秒前
33秒前
nenoaowu发布了新的文献求助10
33秒前
37秒前
39秒前
39秒前
不倦应助发论文采纳,获得10
41秒前
42秒前
科研通AI5应助灵巧觅山采纳,获得10
42秒前
xc发布了新的文献求助10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778812
求助须知:如何正确求助?哪些是违规求助? 3324352
关于积分的说明 10218073
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758437