自回归模型
白噪声
数学
马尔可夫链
独立同分布随机变量
系列(地层学)
应用数学
高斯分布
非线性系统
高斯噪声
时间序列
马尔可夫过程
算法
计算机科学
随机变量
统计
古生物学
生物
物理
量子力学
作者
P.S.V. Subba Rao,Don H. Johnson,Dietmar Becker
摘要
Correlated non-Gaussian Markov sequences can be considered as filtered white noise (independent, identically distributed sequences of random variables), the filter being a nonlinear system in general. The authors discuss the applicability of linear models and nonlinear methods based on the diagonal series expansion of bivariate densities for analyzing this system. Non-Gaussian sequences exhibit different properties in the forward and backward directions of time. The authors explore the connection to system modeling of this temporal asymmetry and some of its consequences. As an example, they analyze a first-order linear autoregressive model with hyperbolic secant amplifier distribution at its output.< >
科研通智能强力驱动
Strongly Powered by AbleSci AI