Inference from Iterative Simulation Using Multiple Sequences

推论 计算机科学 单变量 迭代法 贝叶斯概率 吉布斯抽样 贝叶斯推理 多元正态分布 简单(哲学) 算法 正态性 应用数学 多元统计 计量经济学 数学 统计 机器学习 人工智能 哲学 认识论
作者
Andrew Gelman,Donald B. Rubin
出处
期刊:Statistical Science [Institute of Mathematical Statistics]
卷期号:7 (4) 被引量:15026
标识
DOI:10.1214/ss/1177011136
摘要

The Gibbs sampler, the algorithm of Metropolis and similar iterative simulation methods are potentially very helpful for summarizing multivariate distributions. Used naively, however, iterative simulation can give misleading answers. Our methods are simple and generally applicable to the output of any iterative simulation; they are designed for researchers primarily interested in the science underlying the data and models they are analyzing, rather than for researchers interested in the probability theory underlying the iterative simulations themselves. Our recommended strategy is to use several independent sequences, with starting points sampled from an overdispersed distribution. At each step of the iterative simulation, we obtain, for each univariate estimand of interest, a distributional estimate and an estimate of how much sharper the distributional estimate might become if the simulations were continued indefinitely. Because our focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normality after transformations and marginalization, we derive our results as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations. The methods are illustrated on a random-effects mixture model applied to experimental measurements of reaction times of normal and schizophrenic patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷艳中蓝发布了新的文献求助10
1秒前
祯果粒发布了新的文献求助10
1秒前
2秒前
一只想做科研的狗完成签到,获得积分10
2秒前
Lucas应助SHY采纳,获得10
2秒前
3秒前
bjyx完成签到,获得积分10
3秒前
齐羽完成签到,获得积分10
3秒前
曾经不评完成签到,获得积分10
3秒前
冷静煎饼发布了新的文献求助10
5秒前
一叶不柳晴完成签到,获得积分20
5秒前
6秒前
6秒前
Rainy发布了新的文献求助200
6秒前
7秒前
江凡儿发布了新的文献求助50
8秒前
byby完成签到,获得积分10
9秒前
9秒前
标致如之发布了新的文献求助10
10秒前
10秒前
11秒前
弦歌发布了新的文献求助10
11秒前
默然回首发布了新的文献求助10
11秒前
Lelym驳回了十三应助
11秒前
Martin发布了新的文献求助10
11秒前
Ava应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
cdercder应助科研通管家采纳,获得20
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
13秒前
半柚应助科研通管家采纳,获得10
13秒前
后来应助科研通管家采纳,获得10
13秒前
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
六个核桃发布了新的文献求助10
13秒前
13秒前
Cuillli完成签到,获得积分10
14秒前
在水一方应助月明风清采纳,获得10
15秒前
WK完成签到,获得积分10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803200
求助须知:如何正确求助?哪些是违规求助? 3348381
关于积分的说明 10338132
捐赠科研通 3064392
什么是DOI,文献DOI怎么找? 1682571
邀请新用户注册赠送积分活动 808249
科研通“疑难数据库(出版商)”最低求助积分说明 764034