细胞培养
细胞生长
三维细胞培养
单细胞分析
细胞
化学
细胞生物学
纳米技术
生物物理学
生物
材料科学
生物化学
遗传学
作者
Zhichao Guan,Shasha Jia,Zhi Zhu,Mingxia Zhang,Chaoyong Yang
摘要
Microfabricated devices are suitable for single-cell analysis due to their high throughput, compatible dimensions and controllable microenvironment. However, existing devices for single-cell culture and analysis encounter some limitations, such as nutrient depletion, random cell migration and complicated fluid shear influence. Moreover, most of the single-cell culture and analysis devices are based on 2D cell culture conditions, even though 3D cell culture methods have been demonstrated to better mimic the real cell microenvironment in vivo. To solve these problems, herein we develop a microcollagen gel array (μCGA) based approach for high-throughput long-term single-cell culture and single-cell analysis under 3D culture conditions. Type-I collagen, a well-established 3D cell culture medium, was used as the scaffold for 3D cell growth. A 2 × 2 cm PDMS chip with 10 000 μCGA units was fabricated to encapsulate thousands of single cells in less than 15 min. Single cells were able to be confined and survive in μCGA units for more than 1 month. The capability of large-scale and long-term single-cell 3D culture under open culture conditions allows us to study cellular proliferation heterogeneity and drug cytotoxicity at the single-cell level. Compared with existing devices for single-cell analysis, μCGA solves the problems of nutrient depletion and random cellular migration, avoids the influence of complicated fluid shear, and mimics the real 3D growth environment in vivo, thereby providing a feasible 3D long-term single-cell culture method for single-cell analysis and drug screening.
科研通智能强力驱动
Strongly Powered by AbleSci AI