Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure

材料科学 变形(气象学) 变形机理 复合材料 极限抗拉强度 分子动力学 纳米- 纳米压痕 可塑性 位错 打滑(空气动力学) 应变率
作者
Wen Bin Li,Fuping Yuan,Xiaolei Wu
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:5 (8): 087120- 被引量:9
标识
DOI:10.1063/1.4928448
摘要

Large-scale molecular dynamics (MD) simulations have been performed to investigate the tensile properties and the related atomistic deformation mechanisms of the gradient nano-grained (GNG) structure of bcc Fe (gradient grains with d from 25 nm to 105 nm), and comparisons were made with the uniform nano-grained (NG) structure of bcc Fe (grains with d = 25 nm). The grain size gradient in the nano-scale converts the applied uniaxial stress to multi-axial stresses and promotes the dislocation behaviors in the GNG structure, which results in extra hardening and flow strength. Thus, the GNG structure shows slightly higher flow stress at the early plastic deformation stage when compared to the uniform NG structure (even with smaller grain size). In the GNG structure, the dominant deformation mechanisms are closely related to the grain sizes. For grains with d = 25 nm, the deformation mechanisms are dominated by GB migration, grain rotation and grain coalescence although a few dislocations are observed. For grains with d = 54 nm, dislocation nucleation, propagation and formation of dislocation wall near GBs are observed. Moreover, formation of dislocation wall and dislocation pile-up near GBs are observed for grains with d = 105 nm, which is the first observation by MD simulations to our best knowledge. The strain compatibility among different layers with various grain sizes in the GNG structure should promote the dislocation behaviors and the flow stress of the whole structure, and the present results should provide insights to design the microstructures for developing strong-and-ductile metals. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Plucky发布了新的文献求助10
1秒前
1秒前
3秒前
等你下课发布了新的文献求助20
3秒前
4秒前
senna发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI2S应助111123123123采纳,获得10
5秒前
看着风发布了新的文献求助20
5秒前
6秒前
cctv18应助clm采纳,获得10
7秒前
研友_8QxayZ发布了新的文献求助10
8秒前
dyd完成签到,获得积分10
8秒前
阿大呆呆应助调皮蛋采纳,获得10
9秒前
12Yohann发布了新的文献求助80
9秒前
zy发布了新的文献求助10
9秒前
ccm发布了新的文献求助10
10秒前
orixero应助糖果果采纳,获得10
10秒前
白max发布了新的文献求助10
10秒前
孤鹜发布了新的文献求助30
10秒前
July完成签到,获得积分10
11秒前
ltc发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
asipilin完成签到,获得积分10
13秒前
orixero应助研友_8QxayZ采纳,获得10
13秒前
13秒前
舒服的千亦完成签到,获得积分10
15秒前
lei完成签到,获得积分10
15秒前
SMIRTGIRL完成签到,获得积分10
16秒前
lrc发布了新的文献求助50
16秒前
张艺完成签到,获得积分10
17秒前
霍小美发布了新的文献求助10
18秒前
Cherish完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 1000
Guide to Using WVASE Spectroscopic Ellipsometry Data Acquisition and Analysis Software 600
De l'emploi d'une table chromatique pour les tâches de sang (une planche hors texte) 500
Multifunctionality Agriculture: A New Paradigm for European Agriculture and Rural Development 500
grouting procedures for ground source heat pump 500
ANDA Litigation: Strategies and Tactics for Pharmaceutical Patent Litigators Second 版本 500
中国志愿服务发展报告(2022~2023) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2337428
求助须知:如何正确求助?哪些是违规求助? 2026686
关于积分的说明 5072066
捐赠科研通 1774764
什么是DOI,文献DOI怎么找? 887871
版权声明 555904
科研通“疑难数据库(出版商)”最低求助积分说明 473363