磁滞
最小二乘支持向量机
控制理论(社会学)
执行机构
最小二乘函数近似
补偿(心理学)
过程(计算)
跟踪(教育)
支持向量机
计算机科学
控制器(灌溉)
压电
算法
工程类
数学
人工智能
控制(管理)
物理
估计员
精神分析
农学
生物
操作系统
电气工程
心理学
教育学
统计
量子力学
作者
Xuefei Mao,Haocheng Du,Siwei Sun,Xiangdong Liu,Jinjun Shan,Ying Feng
标识
DOI:10.1088/1361-665x/ac92af
摘要
Abstract The inherent nonlinearities of piezoelectric actuator (PEA), especially hysteresis, greatly reduce the tracking performance of PEA. With a lot of computing resources consumed in the predicting process, the hysteresis modeling method of PEA based on the least-squares support vector machine (LSSVM) cannot be used for hysteresis compensation at high frequency. To solve this problem, a sequential selection approximate algorithm is proposed to obtain a fast sparse LSSVM (SLSSVM) hysteresis model. The SLSSVM model’s support vectors are only 6.8% of the original LSSVM model, by which the modeling speed and calculation speed are greatly improved. The experimental results show that the SLSSVM model improves the tracking accuracy when used in hybrid control system, especially for high frequency trajectories.
科研通智能强力驱动
Strongly Powered by AbleSci AI