Deep Learning of Videourodynamics to Classify Bladder Dysfunction Severity in Patients With Spina Bifida

医学 脊柱裂 逼尿肌括约肌协同失调 卡帕 协同失调 外科 括约肌 神经系统疾病 中枢神经系统疾病 语言学 哲学
作者
John Weaver,Madalyne Martin-Olenski,Joseph Logan,Reiley Broms,Maria Antony,Jason P. Van Batavia,Dana A. Weiss,Christopher Long,Ariana L. Smith,Stephen A. Zderic,Jing Huang,Yong Fan,Gregory E. Tasian
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:209 (5): 994-1003 被引量:9
标识
DOI:10.1097/ju.0000000000003267
摘要

Urologists rely heavily on videourodynamics to identify patients with neurogenic bladders who are at risk of upper tract injury, but their interpretation has high interobserver variability. Our objective was to develop deep learning models of videourodynamics studies to categorize severity of bladder dysfunction.We performed a cross-sectional study of patients aged 2 months to 28 years with spina bifida who underwent videourodynamics at a single institution between 2019 and 2021. The outcome was degree of bladder dysfunction, defined as none/mild, moderate, and severe, defined by a panel of 5 expert reviewers. Reviewers considered factors that increase the risk of upper tract injury, such as poor compliance, elevated detrusor leak point pressure, and detrusor sphincter dyssynergia, in determining bladder dysfunction severity. We built 4 models to predict severity of bladder dysfunction: (1) a random forest clinical model using prospectively collected clinical data from videourodynamics studies, (2) a deep learning convolutional neural network of raw data from the volume-pressure recordings, (3) a deep learning imaging model of fluoroscopic images, (4) an ensemble model averaging the risk probabilities of the volume-pressure and fluoroscopic models.Among 306 videourodynamics studies, the accuracy and weighted kappa of the ensemble model classification of bladder dysfunction when at least 75% expected bladder capacity was reached were 70% (95% CI 66%,76%) and 0.54 (moderate agreement), respectively. The performance of the clinical model built from data extracted by pediatric urologists was the poorest with an accuracy of 61% (55%, 66%) and a weighted kappa of 0.37.Our models built from urodynamic pressure-volume tracings and fluoroscopic images were able to automatically classify bladder dysfunction with moderately high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MillionMiao发布了新的文献求助30
2秒前
小欢发布了新的文献求助10
4秒前
田様应助卷大喵采纳,获得10
5秒前
SciGPT应助王子采纳,获得10
10秒前
快乐的鱼完成签到,获得积分10
14秒前
14秒前
小欢完成签到,获得积分10
17秒前
19秒前
杨惊蛰发布了新的文献求助30
19秒前
21秒前
22秒前
塔塔发布了新的文献求助10
24秒前
王子发布了新的文献求助10
25秒前
doubles发布了新的文献求助30
27秒前
爆米花应助zhang采纳,获得10
28秒前
遇见0608完成签到,获得积分20
30秒前
我是老大应助retard采纳,获得10
30秒前
31秒前
MillionMiao完成签到,获得积分10
34秒前
领导范儿应助遇见0608采纳,获得10
34秒前
塔塔完成签到,获得积分10
36秒前
小四喜发布了新的文献求助10
37秒前
陈小强x发布了新的文献求助30
41秒前
孙廷宇发布了新的文献求助10
42秒前
42秒前
忽晚完成签到 ,获得积分10
43秒前
45秒前
45秒前
zhang发布了新的文献求助10
47秒前
单身的钧完成签到 ,获得积分10
49秒前
遇见0608发布了新的文献求助10
49秒前
景代丝完成签到,获得积分0
52秒前
bezoar完成签到 ,获得积分10
52秒前
doubles发布了新的文献求助30
57秒前
芯子完成签到 ,获得积分20
57秒前
doubles完成签到,获得积分10
1分钟前
情怀应助yaoyaozi采纳,获得10
1分钟前
莲子清凉下火完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781313
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228480
捐赠科研通 3041848
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751