Resonance Testing Data Evaluation Approaches for Scaling Onset Detection in Pipelines

缩放比例 管道运输 固体力学 法律工程学 计算机科学 工程类 材料科学 数学 机械工程 几何学 复合材料
作者
Isabelle Stüwe,Anastassia Küstenmacher,Simon Schmid,Christian U. Große
出处
期刊:Journal of Nondestructive Evaluation [Springer Nature]
卷期号:43 (4) 被引量:1
标识
DOI:10.1007/s10921-024-01132-2
摘要

Abstract Most industries dealing with pipelines face problems resulting from the buildup of deposits therein, such as reduced efficiency, downtime and increased maintenance costs. Although solutions to this issue have been sought for decades, no widely employed technique for monitoring growth of inorganic deposits (or ‘scaling’) in pipelines exists. In this research, a means of detecting the onset of scaling growth, by processing resonance testing data, was sought. For the resonance testing measurements the pipeline segment of interest is equipped with acceleration sensors which record signals generated by impacting the pipeline with a steel tip. The signals are Fourier transformed and analysed in the frequency domain, where a clear shift in frequency peak positions can be observed as the scaling thickness changes. How best to extract quantitative information from the generated frequency data is an open question. In this research, two data analysis approaches for scaling thickness prediction are compared: a supervised (binary classification) machine learning approach as well as a comparison-based change detection approach using cross-correlation. The supervised machine learning approach yields generalizable results for different acceleration sensors and impactor diameters whilst the change detection approach is sensitive from a scaling thickness of 0.5 mm. Whilst this research is specific to the pipe–scaling geometry—and type used in the experiments conducted, resonance testing can be applied to any pipe–scaling combination. The robustness of the data processing approaches presented in this work, when applied to other pipe–scaling materials and geometries, is the next point of research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Zx_1993应助Zcl采纳,获得10
10秒前
愿我如星君如月完成签到 ,获得积分10
16秒前
19秒前
20秒前
20秒前
酷波er应助Xjx6519采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得30
24秒前
浮游应助科研通管家采纳,获得10
25秒前
shhoing应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
老福贵儿应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
Enheng发布了新的文献求助10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
美好惜芹发布了新的文献求助10
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
老福贵儿应助科研通管家采纳,获得10
25秒前
无花果应助科研通管家采纳,获得10
25秒前
大龙哥886应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
大个应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
29秒前
31秒前
33秒前
35秒前
36秒前
37秒前
Xjx6519发布了新的文献求助10
38秒前
耶耶发布了新的文献求助10
39秒前
Jamie_J发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523