亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reconstruction of missing wind data based on limited wind pressure measurements and machine learning

物理 太阳风 气象学 航空航天工程 等离子体 核物理学 工程类
作者
Jeng-Min Huang,Q.S. Li,Xu‐Liang Han
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7)
标识
DOI:10.1063/5.0220410
摘要

In structural health monitoring (SHM), wind field monitoring sometimes suffers from data loss owing to monitoring device failure, which inevitably creates barriers to subsequent data analysis and data mining. To this end, a novel strategy for reconstructing missing wind field data based on machine learning (ML) utilizing limited wind pressure measurements is proposed in this paper. Several ML algorithms, including decision tree, random forest, gradient boosting regression tree, support vector regression, Gaussian process regression, and backpropagation neural network, are employed to characterize potential relationships between wind pressure information (including time series and statistical parameters of wind pressures) and wind field information (e.g., wind direction and wind speed). Moreover, the effect of input information (including the type of input variables as well as the number and location of pressure transducers providing input data) on reconstruction performance and efficiency is investigated. Field measured records from an SHM system in a 600-m-high supertall building during typhoons are utilized to validate the feasibility and robustness of the proposed strategy. The results show that the presented strategy can effectively reconstruct missing wind field information in the SHM of the skyscraper during typhoons. Compared with the time series of wind pressures, selecting statistical parameters of wind pressures as input variables can effectively improve the performance and efficiency of reconstruction models. Choosing appropriate input information (e.g., using multiple input variables, adopting data from a larger number of pressure transducers, and utilizing data from pressure transducers closer to an anemometer) is beneficial for enhancing the performance of reconstruction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongtao完成签到 ,获得积分10
1秒前
缥缈的幻雪完成签到 ,获得积分10
2秒前
5秒前
量子星尘发布了新的文献求助10
8秒前
无花果应助科研通管家采纳,获得10
43秒前
Jasper应助科研通管家采纳,获得10
43秒前
1分钟前
1分钟前
一一完成签到 ,获得积分10
1分钟前
桥西小河完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
caibaozi完成签到,获得积分10
2分钟前
GingerF应助冷静冰枫采纳,获得100
2分钟前
2分钟前
杜阳辉发布了新的文献求助10
2分钟前
chen完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI5应助杜阳辉采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI5应助微笑的鼠标采纳,获得10
3分钟前
HAG完成签到,获得积分10
4分钟前
HAG发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
Billy应助科研通管家采纳,获得30
4分钟前
Billy应助科研通管家采纳,获得30
4分钟前
122319完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
6分钟前
Jasper应助科研通管家采纳,获得10
6分钟前
情怀应助科研通管家采纳,获得10
6分钟前
YHTiAmo完成签到,获得积分10
6分钟前
上官若男应助Said1223采纳,获得10
6分钟前
6分钟前
细腻笑卉发布了新的文献求助10
7分钟前
罗罗诺亚完成签到,获得积分10
7分钟前
细腻笑卉完成签到 ,获得积分10
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Deconstructing Syntactic Theory 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3985915
求助须知:如何正确求助?哪些是违规求助? 3528724
关于积分的说明 11240823
捐赠科研通 3266932
什么是DOI,文献DOI怎么找? 1803614
邀请新用户注册赠送积分活动 880989
科研通“疑难数据库(出版商)”最低求助积分说明 808527