Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory

机械转化 罗亚 干细胞 细胞生物学 化学 免疫学 信号转导 生物
作者
Christopher M. Madl,Yu Xin Wang,Colin Holbrook,Shiqi Su,Xuechen Shi,Fitzroy J. Byfield,Gwendoline Wicki,Iris A. Flaig,Helen M. Blau
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (35) 被引量:3
标识
DOI:10.1073/pnas.2406787121
摘要

Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
带领大家发布了新的文献求助10
5秒前
炮仗完成签到 ,获得积分10
8秒前
顺利绮波发布了新的文献求助10
8秒前
徐卷卷完成签到,获得积分10
8秒前
10秒前
kevin完成签到,获得积分10
10秒前
小郭完成签到,获得积分10
12秒前
导师老八完成签到,获得积分10
13秒前
15秒前
活在当下发布了新的文献求助10
15秒前
带领大家完成签到,获得积分10
15秒前
顺利绮波完成签到,获得积分10
16秒前
bkagyin应助range采纳,获得10
18秒前
小趴菜发布了新的文献求助10
19秒前
Lucas应助豆子采纳,获得10
21秒前
24秒前
导师老八发布了新的文献求助10
26秒前
z7777777完成签到,获得积分10
27秒前
小趴菜发布了新的文献求助10
30秒前
Deftfaker完成签到 ,获得积分10
34秒前
35秒前
37秒前
追寻飞风发布了新的文献求助10
38秒前
39秒前
丘比特应助科研通管家采纳,获得10
40秒前
李健应助科研通管家采纳,获得10
40秒前
赘婿应助科研通管家采纳,获得10
40秒前
科目三应助科研通管家采纳,获得10
40秒前
852应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
高高冰蝶应助科研通管家采纳,获得20
40秒前
40秒前
豆子发布了新的文献求助10
42秒前
满意一曲发布了新的文献求助10
46秒前
依依完成签到 ,获得积分10
46秒前
46秒前
Loik发布了新的文献求助10
48秒前
cxq完成签到 ,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751