Advancing Diabetic Macular Edema Detection from 3D Optical Coherence Tomography Scans: Integrating Privacy-Preserving AI and Generalizability Techniques — A Prospective Validation in Vietnam

概化理论 光学相干层析成像 糖尿病性黄斑水肿 医学 验光服务 眼科 人工智能 计算机科学 糖尿病性视网膜病变 心理学 糖尿病 发展心理学 内分泌学
作者
Truong Nguyen,Meirui Jiang,Dawei Yang,An Ran Ran,Ziqi Tang,Shuyi Zhang,Xiaoyan Hu,V. Tao Tran,Tran B.L. Dai,Diem T. Le,Nguyen T. Tan,Simon Szeto,Cherie YK Wong,Vivian W.K. Hui,Ken Tsang,Carmen K. M. Chan,Hunter K.L. Yuen,Victor T.T. Chan,Andrew C. Y. Mak,Mary Ho
标识
DOI:10.1056/aioa2400091
摘要

BackgroundDiabetic macular edema (DME) is the primary cause of irreversible vision loss among people with diabetes and can be accurately detected by using optical coherence tomography (OCT). We developed and validated a deep learning (DL) model to classify DME on OCT volumetric scans, enhanced by federated learning and advanced DL methods to safeguard patient privacy and improve model generalizability in analyzing unseen OCT scans. The performance and effectiveness of the DL model were then prospectively evaluated in a real-world diabetic retinopathy (DR) screening program in Vietnam.MethodsWe developed and externally tested a federated learning–based DL algorithm for detecting DME and further classifying center-involved DME (CI-DME) and non-CI-DME through three-dimensional OCT volumetric scans. The study used 8031 OCT volumes from 1958 participants with diabetes from Hong Kong, the United States, and Singapore. This DL model was prospectively tested with a novel test-time adaptation method in real time on 1473 OCT volumes from 753 participants with diabetes in a DR screening program in Vietnam. An uncertainty range including dual thresholds was newly introduced to improve the model's trustworthiness by flagging uncertain cases in real-world clinical application.ResultsIn the prospective study in Vietnam, the DL model showed accuracy of 93.70% (95% confidence interval [CI], 91.24 to 94.01%), sensitivity of 91.78% (95% CI, 86.84 to 94.36%), and specificity of 93.06% (95% CI, 91.53 to 94.49%) for detecting the presence of DME, and it showed accuracy of 83.75% (95% CI, 78.17 to 88.83%), sensitivity of 85.61% (95% CI, 79.56 to 91.17%), and specificity of 79.31% (95% CI, 68.75 to 89.09%) for differentiating CI-DME and non-CI DME. In addition, the model identified 64 cases as uncertain, indicating a need for re-evaluation by an ophthalmologist. The DL model and human experts achieved similar performance in identifying DME among individuals with diabetes.ConclusionsOur DL model was effective in detecting DME from three-dimensional OCT scans in a prospective, real-time clinical setting, suggesting that successful deployment of DL to improve DR screening programs in lower- and middle-income countries can be achieved. (Funded by the General Research Fund and others.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研猫完成签到,获得积分10
刚刚
小二郎应助顺利的傲之采纳,获得10
1秒前
此然发布了新的文献求助10
1秒前
华仔应助bitahu采纳,获得10
1秒前
忧虑的钻石完成签到,获得积分10
1秒前
赘婿应助粥粥卷采纳,获得10
2秒前
完美的雪旋完成签到,获得积分10
2秒前
2秒前
迷人雪碧发布了新的文献求助10
3秒前
甜甜玫瑰应助酷炫小馒头采纳,获得10
3秒前
3秒前
lu1222发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
sfy66666发布了新的文献求助20
5秒前
5秒前
优雅山柏发布了新的文献求助10
5秒前
脑洞疼应助忧虑的钻石采纳,获得10
5秒前
5秒前
卡卡西应助旷野采纳,获得10
5秒前
江知之完成签到 ,获得积分0
6秒前
6秒前
xrd发布了新的文献求助10
6秒前
6秒前
bkagyin应助清都山水郎采纳,获得10
7秒前
7秒前
脑洞疼应助德芙纵向丝滑采纳,获得10
7秒前
NexusExplorer应助chenxi3099采纳,获得10
8秒前
夜休2024完成签到,获得积分10
8秒前
8秒前
科研通AI5应助蓝华采纳,获得10
8秒前
8秒前
8秒前
8秒前
乾明少侠完成签到 ,获得积分10
9秒前
GSQ发布了新的文献求助10
9秒前
zzzpf发布了新的文献求助10
9秒前
win完成签到,获得积分20
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793765
求助须知:如何正确求助?哪些是违规求助? 3338643
关于积分的说明 10290816
捐赠科研通 3055026
什么是DOI,文献DOI怎么找? 1676315
邀请新用户注册赠送积分活动 804358
科研通“疑难数据库(出版商)”最低求助积分说明 761836