Advancing Diabetic Macular Edema Detection from 3D Optical Coherence Tomography Scans: Integrating Privacy-Preserving AI and Generalizability Techniques — A Prospective Validation in Vietnam

概化理论 光学相干层析成像 糖尿病性黄斑水肿 医学 验光服务 眼科 人工智能 计算机科学 糖尿病性视网膜病变 心理学 糖尿病 发展心理学 内分泌学
作者
Truong Nguyen,Meirui Jiang,Dawei Yang,An Ran Ran,Ziqi Tang,Shuyi Zhang,Xiaoyan Hu,V. Tao Tran,Tran B.L. Dai,Diem T. Le,Nguyen T. Tan,Simon Szeto,Cherie YK Wong,Vivian W.K. Hui,Ken Tsang,Carmen K. M. Chan,Hunter K.L. Yuen,Victor T.T. Chan,Andrew C. Y. Mak,Mary Ho
标识
DOI:10.1056/aioa2400091
摘要

BackgroundDiabetic macular edema (DME) is the primary cause of irreversible vision loss among people with diabetes and can be accurately detected by using optical coherence tomography (OCT). We developed and validated a deep learning (DL) model to classify DME on OCT volumetric scans, enhanced by federated learning and advanced DL methods to safeguard patient privacy and improve model generalizability in analyzing unseen OCT scans. The performance and effectiveness of the DL model were then prospectively evaluated in a real-world diabetic retinopathy (DR) screening program in Vietnam.MethodsWe developed and externally tested a federated learning–based DL algorithm for detecting DME and further classifying center-involved DME (CI-DME) and non-CI-DME through three-dimensional OCT volumetric scans. The study used 8031 OCT volumes from 1958 participants with diabetes from Hong Kong, the United States, and Singapore. This DL model was prospectively tested with a novel test-time adaptation method in real time on 1473 OCT volumes from 753 participants with diabetes in a DR screening program in Vietnam. An uncertainty range including dual thresholds was newly introduced to improve the model's trustworthiness by flagging uncertain cases in real-world clinical application.ResultsIn the prospective study in Vietnam, the DL model showed accuracy of 93.70% (95% confidence interval [CI], 91.24 to 94.01%), sensitivity of 91.78% (95% CI, 86.84 to 94.36%), and specificity of 93.06% (95% CI, 91.53 to 94.49%) for detecting the presence of DME, and it showed accuracy of 83.75% (95% CI, 78.17 to 88.83%), sensitivity of 85.61% (95% CI, 79.56 to 91.17%), and specificity of 79.31% (95% CI, 68.75 to 89.09%) for differentiating CI-DME and non-CI DME. In addition, the model identified 64 cases as uncertain, indicating a need for re-evaluation by an ophthalmologist. The DL model and human experts achieved similar performance in identifying DME among individuals with diabetes.ConclusionsOur DL model was effective in detecting DME from three-dimensional OCT scans in a prospective, real-time clinical setting, suggesting that successful deployment of DL to improve DR screening programs in lower- and middle-income countries can be achieved. (Funded by the General Research Fund and others.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Laraineww完成签到 ,获得积分10
2秒前
美好向日葵完成签到,获得积分10
4秒前
晶晶宝贝的完成签到 ,获得积分10
4秒前
默默天德发布了新的文献求助10
4秒前
11秒前
ywj发布了新的文献求助30
15秒前
达达完成签到,获得积分10
18秒前
俞无声完成签到 ,获得积分10
19秒前
接accept完成签到 ,获得积分10
20秒前
22秒前
我是老大应助科研通管家采纳,获得10
26秒前
嘿嘿应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
斯奈克应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
27秒前
junia完成签到,获得积分10
31秒前
李木子完成签到 ,获得积分10
33秒前
JIECHENG完成签到 ,获得积分10
33秒前
36秒前
学术牛马完成签到,获得积分10
39秒前
友好的南风完成签到,获得积分10
39秒前
棕色垂耳兔完成签到 ,获得积分10
42秒前
酷炫的大碗完成签到,获得积分10
42秒前
43秒前
平凡世界完成签到 ,获得积分10
44秒前
JIA完成签到 ,获得积分10
44秒前
44秒前
汉堡包应助斯文的傲珊采纳,获得10
45秒前
青青完成签到 ,获得积分10
51秒前
乐观健柏完成签到,获得积分10
52秒前
情怀应助左惋庭采纳,获得10
52秒前
爱静静应助周凡淇采纳,获得30
53秒前
53秒前
八点必起完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304405
求助须知:如何正确求助?哪些是违规求助? 4450962
关于积分的说明 13850152
捐赠科研通 4337939
什么是DOI,文献DOI怎么找? 2381725
邀请新用户注册赠送积分活动 1376759
关于科研通互助平台的介绍 1343885