已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Vehicle platoon safety considering the vehicle cut-in: A coupled reinforcement learning and model predictive control approach

强化学习 模型预测控制 钢筋 计算机科学 控制(管理) 工程类 汽车工程 人工智能 结构工程
作者
Taiping Yang,Peiqing Li,Qipeng Li,Shunfeng Zhang,Zhuoran Li
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:239 (12): 5970-5986 被引量:1
标识
DOI:10.1177/09544070241279486
摘要

A longitudinal platoon control method based on Twin Delayed Deep Deterministic Policy Gradient (TD3) and Model Predictive Control (MPC) is proposed to solve the problems of low following efficiency and system instability in longitudinal platoon control. Firstly, Dynamic Bayesian Network (DBN) and Long Short-Term Memory (LSTM) network are introduced to identify the driving behavior of bystanders and derive the MPC objective constraint function containing three indicators of following, comfort and fuel consumption according to the platoon dynamics equation. Secondly, the system prediction model and cost function are introduced into the action-critic network of TD3 to solve the problem of no model training in the traditional TD3 algorithm and to speed up the training speed and accuracy of the network. On this basis, a Bellman equation is proposed to calculate the time-domain difference error and the expected loss function to solve the TD3 network overestimation problem. Finally, the joint simulation platform is built to simulate the platoon driving conditions and compare with the DDPG optimization algorithm and the traditional MPC algorithm respectively. The results show that the improved TD3-MPC algorithm satisfies the constraints and the spacing error is controlled within 0.3 m, and the vehicle speed changes more smoothly in the scenario of speed fluctuation in the front vehicle, and the ride comfort of the platoon is improved, and it has better robustness in the scenario of vehicle cut-in. The experimental results show that when the vehicle speeds are 20, 40, and 60 km/h, compared to MPC, the average spacing errors are reduced by 27.56%, 25.64%, and 28.04%, respectively, and compared to DDPG-MPC, the average spacing errors are reduced by 6.59%, 8.77%, and 7.86%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
97_完成签到,获得积分10
6秒前
HONG完成签到 ,获得积分10
11秒前
J2025发布了新的文献求助10
11秒前
深情安青应助风清扬采纳,获得10
12秒前
咸鱼王完成签到,获得积分10
13秒前
13秒前
gezid完成签到 ,获得积分10
14秒前
打打应助大抵是能上岸的采纳,获得10
14秒前
Jenny完成签到 ,获得积分10
15秒前
16秒前
七木完成签到,获得积分10
16秒前
龙子黄发布了新的文献求助10
17秒前
17秒前
美好的访琴完成签到,获得积分20
17秒前
xvan发布了新的文献求助10
22秒前
ecnu搬砖人完成签到,获得积分10
23秒前
FashionBoy应助小米采纳,获得10
24秒前
24秒前
ecnu搬砖人发布了新的文献求助30
25秒前
25秒前
脑洞疼应助学医梅西采纳,获得10
25秒前
湘南之地完成签到,获得积分10
27秒前
123发布了新的文献求助10
27秒前
27秒前
紫愿完成签到 ,获得积分10
28秒前
Rollei给Rollei的求助进行了留言
29秒前
思源应助余婷采纳,获得10
29秒前
湘南之地发布了新的文献求助10
30秒前
小鱼完成签到 ,获得积分10
33秒前
刘刘完成签到 ,获得积分10
35秒前
35秒前
wik完成签到 ,获得积分10
37秒前
幸运鹅应助平淡道天采纳,获得10
37秒前
wu完成签到 ,获得积分10
37秒前
卡恩完成签到 ,获得积分0
38秒前
40秒前
Wendy发布了新的文献求助10
41秒前
风清扬发布了新的文献求助10
41秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493402
求助须知:如何正确求助?哪些是违规求助? 4591431
关于积分的说明 14433835
捐赠科研通 4523958
什么是DOI,文献DOI怎么找? 2478514
邀请新用户注册赠送积分活动 1463494
关于科研通互助平台的介绍 1436350