Elevating nanomaterial optical sensor arrays through the integration of advanced machine learning techniques for enhancing visual inspection of food quality and safety

食品安全 质量(理念) 目视检查 食品质量 计算机科学 纳米材料 纳米技术 风险分析(工程) 人工智能 材料科学 业务 食品科学 化学 哲学 认识论
作者
Yuandong Lin,Jun‐Hu Cheng,Ji Ma,Chenyue Zhou,Da‐Wen Sun
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:: 1-22 被引量:2
标识
DOI:10.1080/10408398.2024.2376113
摘要

Food quality and safety problems caused by inefficient control in the food chain have significant implications for human health, social stability, and economic progress and optical sensor arrays (OSAs) can effectively address these challenges. This review aims to summarize the recent applications of nanomaterials-based OSA for food quality and safety visual monitoring, including colourimetric sensor array (CSA) and fluorescent sensor array (FSA). First, the fundamental properties of various advanced nanomaterials, mainly including metal nanoparticles (MNPs) and nanoclusters (MNCs), quantum dots (QDs), upconversion nanoparticles (UCNPs), and others, were described. Besides, the diverse machine learning (ML) and deep learning (DL) methods of high-dimensional data obtained from the responses between different sensing elements and analytes were presented. Moreover, the recent and representative applications in pesticide residues, heavy metal ions, bacterial contamination, antioxidants, flavor matters, and food freshness detection were comprehensively summarized. Finally, the challenges and future perspectives for nanomaterials-based OSAs are discussed. It is believed that with the advancements in artificial intelligence (AI) techniques and integrated technology, nanomaterials-based OSAs are expected to be an intelligent, effective, and rapid tool for food quality assessment and safety control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
如意以晴发布了新的文献求助10
2秒前
2秒前
GOD伟完成签到,获得积分10
2秒前
Assure发布了新的文献求助10
3秒前
还可以的发布了新的文献求助10
3秒前
温暖琦发布了新的文献求助10
3秒前
3秒前
阳光山槐发布了新的文献求助30
4秒前
科目三应助缓慢思枫采纳,获得10
5秒前
5秒前
英俊的铭应助66采纳,获得10
6秒前
猪猪发布了新的文献求助10
6秒前
marketing完成签到,获得积分10
6秒前
hehe完成签到,获得积分10
7秒前
7秒前
呆萌凤完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
青争发布了新的文献求助10
9秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
zzjjxx应助自觉问梅采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
冰魂应助科研通管家采纳,获得20
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
whs应助科研通管家采纳,获得20
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835595
求助须知:如何正确求助?哪些是违规求助? 3377959
关于积分的说明 10501323
捐赠科研通 3097529
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772226