Machine Learning–Based Prediction Models for Delirium: A Systematic Review and Meta-Analysis

谵妄 接收机工作特性 医学 荟萃分析 检查表 置信区间 科克伦图书馆 机器学习 人工智能 梅德林 系统回顾 样本量测定 统计 出版偏见 内科学 计算机科学 重症监护医学 心理学 认知心理学 法学 数学 政治学
作者
Qi Xie,Xing‐Lei Wang,Juhong Pei,Yin-Ping Wu,Qiang Guo,Yujie Su,Hui Yan,Ruiling Nan,Haixia Chen,Xinman Dou
出处
期刊:Journal of the American Medical Directors Association [Elsevier BV]
卷期号:23 (10): 1655-1668.e6 被引量:17
标识
DOI:10.1016/j.jamda.2022.06.020
摘要

To critically appraise and quantify the performance studies by employing machine learning (ML) to predict delirium.A systematic review and meta-analysis.Articles reporting the use of ML to predict delirium in adult patients were included. Studies were excluded if (1) the primary goal was only the identification of various risk factors for delirium; (2) the full-text article was not found; and (3) the article was published in a language other than English/Chinese.PubMed, Embase, Cochrane Library database, Web of Science, Grey literature, and other relevant databases for the related publications were searched (from inception to December 15, 2021). The data were extracted using a standard checklist, and the risk of bias was assessed through the prediction model risk of bias assessment tool. Meta-analysis with the area under the receiver operating characteristic curve, sensitivity, and specificity as effect measures, was performed with Metadisc software. Cochran Q and I2 statistics were used to assess the heterogeneity. Meta-regression was performed to determine the potential effect of adjustment for the key covariates.A total of 22 studies were included. Only 4 of 22 studies were quantitatively analyzed. The studies varied widely in reporting about the study participants, features and selection, handling of missing data, sample size calculations, and the intended clinical application of the model. For ML models, the overall pooled area under the receiver operating characteristic curve for predicting delirium was 0.89, sensitivity 0.85 (95% confidence interval 0.84‒0.85), and specificity 0.80 (95% confidence interval 0.81-0.80).We found that the ML model showed excellent performance in predicting delirium. This review highlights the potential shortcomings of the current approaches, including low comparability and reproducibility. Finally, we present the various recommendations on how these challenges can be effectively addressed before deploying these models in prospective analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦璃完成签到 ,获得积分10
1秒前
xyz发布了新的文献求助10
2秒前
打打应助茂飞采纳,获得10
4秒前
爱听歌的孤容完成签到 ,获得积分10
6秒前
慕青应助想人陪的向南采纳,获得10
6秒前
安白发布了新的文献求助10
7秒前
7秒前
8秒前
fagfagsf发布了新的文献求助10
14秒前
tttttt完成签到,获得积分10
16秒前
上善若水完成签到 ,获得积分10
18秒前
18秒前
达瓦里希完成签到 ,获得积分10
23秒前
23秒前
谷德耐给谷德耐的求助进行了留言
26秒前
Hello应助Yunus采纳,获得10
27秒前
orixero应助lv采纳,获得10
28秒前
田様应助聪明的冬瓜采纳,获得10
28秒前
bxll完成签到 ,获得积分10
31秒前
wy.he应助黑米粥采纳,获得10
32秒前
wy.he应助黑米粥采纳,获得10
33秒前
ding应助黑米粥采纳,获得10
33秒前
爆米花应助黑米粥采纳,获得10
33秒前
想人陪的向南完成签到,获得积分10
34秒前
35秒前
自信夜春完成签到,获得积分10
36秒前
奋斗机器猫完成签到 ,获得积分10
39秒前
40秒前
cxwcn发布了新的文献求助10
40秒前
40秒前
共享精神应助假面绅士采纳,获得10
45秒前
Yunus发布了新的文献求助10
46秒前
研友_VZG7GZ应助自由采纳,获得10
46秒前
jiujiuwo完成签到,获得积分10
47秒前
CipherSage应助ykxa采纳,获得10
47秒前
47秒前
52秒前
L_online完成签到 ,获得积分10
52秒前
啵啵冰应助清晨采纳,获得50
53秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777922
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214842
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315