A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion

分割 联营 人工智能 计算机科学 特征(语言学) 计算机视觉 块(置换群论) 模式识别(心理学) 眼底(子宫) 眼科 数学 医学 几何学 哲学 语言学
作者
Jianyong Li,Ge Gao,Lei Yang,Yanhong Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108315-108315 被引量:12
标识
DOI:10.1016/j.compbiomed.2024.108315
摘要

The incidence of blinding eye diseases is highly correlated with changes in retinal morphology, and is clinically detected by segmenting retinal structures in fundus images. However, some existing methods have limitations in accurately segmenting thin vessels. In recent years, deep learning has made a splash in the medical image segmentation, but the lack of edge information representation due to repetitive convolution and pooling, limits the final segmentation accuracy. To this end, this paper proposes a pixel-level retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Here, a multiple dimension attention enhancement (MDAE) block is proposed to acquire more local edge information. Meanwhile, a deep guidance fusion (DGF) block and a cross-pooling semantic enhancement (CPSE) block are proposed simultaneously to acquire more global contexts. Further, the predictions of different decoding stages are learned and aggregated by an adaptive weight learner (AWL) unit to obtain the best weights for effective feature fusion. The experimental results on three public fundus image datasets show that proposed network could effectively enhance the segmentation performance on retinal blood vessels. In particular, the proposed method achieves AUC of 98.30%, 98.75%, and 98.71% on the DRIVE, CHASE_DB1, and STARE datasets, respectively, while the F1 score on all three datasets exceeded 83%. The source code of the proposed model is available at https://github.com/gegao310/VesselSeg-Pytorch-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Lucas应助GOUGOU2022采纳,获得10
2秒前
anders发布了新的文献求助10
2秒前
呱呱小蛙发布了新的文献求助30
2秒前
W2Yu发布了新的文献求助10
2秒前
竹筏过海完成签到,获得积分0
2秒前
DumBell发布了新的文献求助10
2秒前
HY发布了新的文献求助10
3秒前
ldk完成签到,获得积分10
3秒前
酷波er应助TillySss采纳,获得10
3秒前
田様应助TillySss采纳,获得10
3秒前
key完成签到,获得积分10
4秒前
4秒前
汉堡包应助纳斯达克采纳,获得10
4秒前
Vegetable_Dog发布了新的文献求助10
5秒前
华仔应助柠檬不吃酸采纳,获得10
5秒前
无与伦比发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
香蕉觅云应助呱呱小蛙采纳,获得10
6秒前
7秒前
顾矜应助TTOM采纳,获得10
7秒前
N_N关注了科研通微信公众号
8秒前
joysa发布了新的文献求助10
8秒前
机智冬瓜完成签到,获得积分10
8秒前
完美世界应助冷静白亦采纳,获得10
9秒前
9秒前
9秒前
TillySss完成签到,获得积分10
9秒前
科研助手6应助青稚采纳,获得10
10秒前
11秒前
11秒前
12秒前
珈砾完成签到 ,获得积分10
12秒前
端庄新烟完成签到,获得积分10
12秒前
DumBell完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793624
求助须知:如何正确求助?哪些是违规求助? 3338571
关于积分的说明 10290280
捐赠科研通 3054974
什么是DOI,文献DOI怎么找? 1676259
邀请新用户注册赠送积分活动 804300
科研通“疑难数据库(出版商)”最低求助积分说明 761836