颂歌
流行病模型
基本再生数
数学
应用数学
稳定性理论
平衡点
边界(拓扑)
数理经济学
纯数学
组合数学
数学分析
物理
人口学
微分方程
人口
非线性系统
量子力学
社会学
作者
Lei Li,Wenjie Ni,Mingxin Wang
标识
DOI:10.3934/dcdss.2023076
摘要
Taking into account the depletion of food supply by all individuals, and the fact that chronic infectious diseases will not cause the infected individuals to lose their fertility completely, we first propose a new SIR epidemic model of ODE. For this model, we derive its basic reproduction number $ \mathcal{R}_0 $, and show that the disease-free equilibrium point is globally asymptotically stable when $ \mathcal{R}_0\le1 $, while the unique positive equilibrium point is globally asymptotically stable when $ \mathcal{R}_0>1 $. Then we incorporate the spatial dispersion and free boundary condition into this ODE model. The well-posedness and longtime behaviors are obtained. Particularly, we find a spreading-vanishing dichotomy in which the basic reproduction number $ \mathcal{R}_0 $ plays a crucial role.
科研通智能强力驱动
Strongly Powered by AbleSci AI