重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Development and Validation of a Predictive Model for Severe Tubular Atrophy/Interstitial Fibrosis in Patients with IgA Nephropathy: Multicenter Retrospective Study

作者
Caizheng Yu,Zhitong Niu,Qin Fang,Qing Lei
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:13: e78761-e78761
标识
DOI:10.2196/78761
摘要

Abstract Background Severe tubular atrophy/interstitial fibrosis are critical pathological features associated with poor prognosis in IgA nephropathy (IgAN). The early identification of patients at high risk for severe tubular damage could guide clinical management and improve outcomes. Objective This study aimed to construct and validate a predictive model for assessing the risk of severe tubular atrophy and interstitial fibrosis in patients diagnosed with IgAN. Methods A total of 3276 patients from the Hankou branch of Tongji Hospital were retrospectively enrolled for model development. A predictive model for severe tubular atrophy/interstitial fibrosis was constructed based on independent predictors identified through univariate analysis, least absolute shrinkage and selection operator regression, and stepwise logistic regression. Furthermore, the model underwent internal and external validation using an independent dataset (n=1062), and performance evaluation using six machine learning algorithms: random forest, generalized linear model, decision tree, gradient boosting decision tree, extreme gradient boosting, and support vector machine. Results In this study, 8 variables were identified as independent predictors and used to construct a predictive model for severe tubular atrophy/interstitial fibrosis: Logit (P)=0.011×age (years)+0.324×hypertension history–0.302×education+.111×coefficient of variation of red cell distribution width–0.152×direct bilirubin (μmol/L)+0.003×uric acid (μmol/L)–0.021×estimated glomerular filtration rate (ml/min/1.73m²)+1.151×ln(24 h urine microalbumin) (mg/24h). The AUC for the predictive model was 0.860 (95% CI 0.847‐0.873). The AUCs (95% CI) of the six machine learning algorithms ranged from 0.793 (0.765‐0.822) to 0.880 (0.859‐0.902) in internal validation and from 0.785 (0.756‐0.814) to 0.862 (0.839‐0.885) in external validation. Conclusions We developed a concise and clinically useful model for predicting severe tubular atrophy/interstitial fibrosis in IgA nephropathy. It offers a non-invasive tool for risk assessment when biopsy is not feasible, aiding personalized treatment decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WEE完成签到,获得积分20
刚刚
1秒前
墨羽完成签到,获得积分10
2秒前
WEE发布了新的文献求助10
3秒前
Nniu完成签到,获得积分10
4秒前
4秒前
rainyy发布了新的文献求助10
4秒前
小慧发布了新的文献求助10
5秒前
淡淡依白发布了新的文献求助10
5秒前
wwewew发布了新的文献求助10
5秒前
Ava应助Huguizhou采纳,获得10
5秒前
6秒前
YpH发布了新的文献求助10
6秒前
6秒前
小袁完成签到,获得积分10
7秒前
7秒前
火星上的忆枫关注了科研通微信公众号
7秒前
9秒前
独特的绮山完成签到,获得积分10
9秒前
大模型应助清秋采纳,获得10
9秒前
9秒前
萧萧发布了新的文献求助10
9秒前
波比不菜完成签到,获得积分10
10秒前
高贵绿真完成签到 ,获得积分10
11秒前
危机的忆之完成签到,获得积分10
11秒前
11秒前
静静发布了新的文献求助10
12秒前
TT关闭了TT文献求助
12秒前
12秒前
wise111发布了新的文献求助10
12秒前
12秒前
13秒前
玛雅太阳神完成签到,获得积分10
13秒前
魔幻乐安完成签到,获得积分10
13秒前
小熊熊完成签到,获得积分10
13秒前
14秒前
科研通AI6应助诗歌节公社采纳,获得10
15秒前
YpH完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
脑洞疼应助嘿嘿采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739