Ultrasmall Manganese-Doped TiO 2– x Overcomes the Efficacy–Safety Dilemma of Sonodynamic Therapy via Tumor Microenvironment-Responsive Reactive Oxygen Species Amplification and Clearance

声动力疗法 活性氧 肿瘤微环境 材料科学 氧气 兴奋剂 纳米技术 放射化学 癌症研究 化学 肿瘤细胞 医学 生物化学 光电子学 有机化学 冶金
作者
Weihao Zhu,Yabing Sun,Kaiwei Xu,Chaoxiang Xie,Ming Yang,Yonglong Ye,Jia Luo,Haijing Cui,Liangxue Lai,Tianxiang Chen,Xuehua Ma,Jie Lin,Wenzhi Ren,Aiguo Wu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (44): 38440-38456
标识
DOI:10.1021/acsnano.5c11335
摘要

The clinical translation of inorganic sonosensitizers for cancer sonodynamic therapy (SDT) is constrained by two interconnected barriers: insufficient therapeutic efficacy due to low reactive oxygen species (ROS) yield and long-term toxicity risks due to poor metabolic clearance. Although conventional ultrasmall size designs achieved renal clearance, they reduce the sonosensitizers' accumulation in the tumor and further weaken treatment outcomes. To address these challenges, we developed a tumor microenvironment (TME)-responsive Mn-doped TiO2-x nanoplatform (2.4 nm). Optimal Mn doping induced defect-mediated bandgap narrowing, generating oxygen vacancies and intermediate states that reduced the TiO2 bandgap from 3.20 to 2.30 eV, thereby enhancing sonosensitivity. Simultaneously, Mn2+-driven Fenton-like catalysis exploited elevated H2O2 levels to generate O2 in the TME, alleviating tumor hypoxia while amplifying ROS production. Critically, pH-triggered surface transformation enabled spontaneous intratumoral aggregation: acid-labile PEG shedding exposed biorthogonal click groups that cross-link sonosensitizers into ∼230 nm assemblies, thereby boosting tumor retention. This integrated strategy elevated cellular ROS yield 9.7-fold under ultrasound irradiation and achieved 98.2% tumor suppression in mouse models. Concurrently, nonaccumulated sonosensitizers were cleared by the kidney due to their ultrasmall diameter, mitigating systemic toxicity risks. This work establishes a paradigm for inorganic sonosensitizers that intrinsically unite defect-optimized sonosensitivity, TME-enhanced catalysis, and tumor-retentive aggregation with on-demand metabolic clearance, resolving the fundamental efficacy-safety conflict in SDT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈华炜完成签到,获得积分10
1秒前
2秒前
香蕉觅云应助魂断红颜采纳,获得10
2秒前
2秒前
3秒前
3秒前
tomato大王发布了新的文献求助10
4秒前
LL完成签到 ,获得积分10
4秒前
执着蓝完成签到,获得积分20
4秒前
科研通AI6应助whq531608采纳,获得10
4秒前
4秒前
LL完成签到 ,获得积分10
5秒前
罗大人发布了新的文献求助30
5秒前
5秒前
小蘑菇应助啦啦王采纳,获得10
6秒前
传奇3应助蛋炒饭采纳,获得10
6秒前
共享精神应助哈哈采纳,获得10
6秒前
6秒前
林妹妹完成签到 ,获得积分10
6秒前
Ava应助顺心白开水采纳,获得10
6秒前
爱壹帆完成签到,获得积分10
7秒前
高糕完成签到,获得积分10
8秒前
eric888应助执着蓝采纳,获得30
8秒前
搞怪白秋发布了新的文献求助10
8秒前
ff完成签到,获得积分20
9秒前
李健的小迷弟应助黄三金采纳,获得10
9秒前
gxj完成签到,获得积分10
9秒前
9秒前
liukanhai完成签到,获得积分10
9秒前
栀暖棠深完成签到,获得积分10
10秒前
11秒前
Nothing发布了新的文献求助10
11秒前
12秒前
13秒前
JerryAn发布了新的文献求助10
13秒前
愤怒的凤完成签到,获得积分10
13秒前
14秒前
14秒前
一心完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605