Finding features - variable extraction strategies for dimensionality reduction and marker compounds identification in GC-IMS data

过度拟合 降维 人工智能 可解释性 计算机科学 主成分分析 管道(软件) 模式识别(心理学) 偏最小二乘回归 Boosting(机器学习) 预处理器 机器学习 数据挖掘 人工神经网络 程序设计语言
作者
Joscha Christmann,Sascha Rohn,Philipp Weller
出处
期刊:Food Research International [Elsevier BV]
卷期号:161: 111779-111779 被引量:13
标识
DOI:10.1016/j.foodres.2022.111779
摘要

Gas chromatography hyphenated to ion mobility spectrometry (GC-IMS) is a powerful, two-dimensional separation and detection technique for volatile organic compounds (VOC). Low detection limits, high selectivity and robust operation characterize it as an ideal tool for non-target screening (NTS) approaches. Combined with multivariate data analysis, it has been successfully applied to several areas in food science, such as authenticity control and flavor profiling. The recorded raw data feature high numbers of variables due to the high scan speeds of the instrument. Additionally, NTS approaches - by design - record more data than required. Therefore, reducing the number of variables is a key step in any machine learning pipeline to reduce overfitting, overlong training times and model complexity. The aim of the study is a comparison between the two most used dimensionality reduction techniques, PCA and PLS, regarding interpretability, as a tool to find marker compounds, and performance as a preprocessing step for supervised learning. Both feature per variable visualizations, which allows easy interpretation of results and retains a connection to the input data, which can lead to the discovery of marker compounds. A GC-IMS dataset about the botanical origin of honey is used, and all formatting steps necessary to apply PCA and PLS to higher dimensional data and obtain intuitive figures are explained. To evaluate effectiveness as a preprocessing step in a supervised pipeline four supervised algorithms were fitted with PCA or PLS variable reduction. PLS proved to be a more effective step in a supervised workflow in terms of accuracy, while PCA is highly effective for revealing preprocessing weaknesses such as misalignments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肖肖完成签到,获得积分10
2秒前
宝小静完成签到,获得积分10
3秒前
3秒前
搜集达人应助布医采纳,获得10
5秒前
隐形曼青应助123123采纳,获得10
7秒前
不安的白昼完成签到 ,获得积分10
7秒前
7秒前
可爱的函函应助司连喜采纳,获得10
7秒前
派大兴完成签到,获得积分20
10秒前
杂化轨道退役研究员完成签到,获得积分10
10秒前
12秒前
木子李完成签到 ,获得积分10
12秒前
12秒前
kmzzy完成签到 ,获得积分10
13秒前
15秒前
深情安青应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
Hello应助踏实雨采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
18秒前
China完成签到,获得积分10
19秒前
布医发布了新的文献求助10
19秒前
吱吱发布了新的文献求助10
19秒前
papa应助认真荣轩采纳,获得10
20秒前
21秒前
21秒前
botanist完成签到 ,获得积分10
22秒前
22秒前
神勇友灵完成签到,获得积分10
23秒前
25秒前
26秒前
正在下雨发布了新的文献求助10
26秒前
28秒前
28秒前
司连喜发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669