亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Finding features - variable extraction strategies for dimensionality reduction and marker compounds identification in GC-IMS data

过度拟合 降维 人工智能 可解释性 计算机科学 主成分分析 管道(软件) 模式识别(心理学) 偏最小二乘回归 Boosting(机器学习) 预处理器 机器学习 数据挖掘 人工神经网络 程序设计语言
作者
Joscha Christmann,Sascha Rohn,Philipp Weller
出处
期刊:Food Research International [Elsevier]
卷期号:161: 111779-111779 被引量:39
标识
DOI:10.1016/j.foodres.2022.111779
摘要

Gas chromatography hyphenated to ion mobility spectrometry (GC-IMS) is a powerful, two-dimensional separation and detection technique for volatile organic compounds (VOC). Low detection limits, high selectivity and robust operation characterize it as an ideal tool for non-target screening (NTS) approaches. Combined with multivariate data analysis, it has been successfully applied to several areas in food science, such as authenticity control and flavor profiling. The recorded raw data feature high numbers of variables due to the high scan speeds of the instrument. Additionally, NTS approaches - by design - record more data than required. Therefore, reducing the number of variables is a key step in any machine learning pipeline to reduce overfitting, overlong training times and model complexity. The aim of the study is a comparison between the two most used dimensionality reduction techniques, PCA and PLS, regarding interpretability, as a tool to find marker compounds, and performance as a preprocessing step for supervised learning. Both feature per variable visualizations, which allows easy interpretation of results and retains a connection to the input data, which can lead to the discovery of marker compounds. A GC-IMS dataset about the botanical origin of honey is used, and all formatting steps necessary to apply PCA and PLS to higher dimensional data and obtain intuitive figures are explained. To evaluate effectiveness as a preprocessing step in a supervised pipeline four supervised algorithms were fitted with PCA or PLS variable reduction. PLS proved to be a more effective step in a supervised workflow in terms of accuracy, while PCA is highly effective for revealing preprocessing weaknesses such as misalignments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱打球的小蔡鸡完成签到,获得积分10
7秒前
11秒前
在水一方应助欧阳小爽采纳,获得10
17秒前
23秒前
25秒前
欧阳小爽发布了新的文献求助10
32秒前
lovelife完成签到,获得积分10
39秒前
47秒前
Criminology34应助科研通管家采纳,获得10
47秒前
Criminology34应助科研通管家采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
欧阳小爽完成签到 ,获得积分10
49秒前
蘑菇完成签到 ,获得积分10
53秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ys完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
斯文败类应助mphla采纳,获得10
1分钟前
KKKKKKKKKKKK发布了新的文献求助10
1分钟前
阔达板栗发布了新的文献求助10
1分钟前
1分钟前
mphla完成签到,获得积分10
1分钟前
mphla发布了新的文献求助10
1分钟前
2分钟前
fanhuaxuejin完成签到 ,获得积分10
2分钟前
开朗飞阳发布了新的文献求助10
2分钟前
磨刀霍霍阿里嘎多完成签到,获得积分10
2分钟前
2分钟前
画晴完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
dawnfrf完成签到,获得积分10
2分钟前
小静发布了新的文献求助10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706146
求助须知:如何正确求助?哪些是违规求助? 5170235
关于积分的说明 15246630
捐赠科研通 4859788
什么是DOI,文献DOI怎么找? 2608096
邀请新用户注册赠送积分活动 1559027
关于科研通互助平台的介绍 1516793