SegCTC: Offline Handwritten Chinese Text Recognition via Better Fusion Between Explicit and Implicit Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 性格(数学) 语音识别 数学 几何学
作者
Jianhui Huang,Dezhi Peng,Hongliang Li,Hao Ni,Lianwen Jin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 332-349
标识
DOI:10.1007/978-3-031-41685-9_21
摘要

Handwritten Chinese text recognition (HCTR) is still a challenging and unsolved problem. The existing recognition methods are mainly categorized into two: explicit vs implicit segmentation-based methods. Explicit segmentation recognition methods use explicit character location information to train the recognizers. However, the widely used weakly supervised training strategy based on pseudo-label makes it difficult to get effective supervised training for difficult character samples. In contrast, the implicit segmentation recognition method use all transcript annotations for supervised training, but it is prone to misalignment problem due to the lack of explicit supervised information of character positions. To take advantage of the complementary nature of explicit and implicit segmentation approaches, we propose a new method, SegCTC, which better integrates these two approaches into a unified to be a more powerful recognizer. Specifically, we designed a hybrid Segmentation-based and Segmentation-free Feature Fusion Module (S $$^2$$ FFM) to better fuse the features of both explicit and implicit segmentation-based recognition branches. Moreover, a co-transcription strategy is also proposed to better combine the predictions from different branches. Experiments on four widely used benchmarks including CASIA-HWDB, ICDAR2013, SCUT-HCCDoc and MTHv2 show that our method achieves state-of-the-art performance for the HCTR task under different scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助iuv采纳,获得10
刚刚
TFL完成签到,获得积分10
3秒前
李健的小迷弟应助胡豆豆采纳,获得10
9秒前
9秒前
上官若男应助读书的时候采纳,获得10
10秒前
10秒前
乐乐应助诡异乐园采纳,获得10
10秒前
10秒前
12秒前
李九日发布了新的文献求助10
13秒前
14秒前
iuv发布了新的文献求助10
15秒前
16秒前
17秒前
yar应助林早上采纳,获得10
17秒前
17秒前
小何医生发布了新的文献求助30
19秒前
李健应助vv采纳,获得10
20秒前
StH发布了新的文献求助10
21秒前
21秒前
dreamlightzy完成签到,获得积分10
22秒前
23秒前
23秒前
李健的小迷弟应助tcf采纳,获得10
23秒前
我是老大应助tcf采纳,获得10
24秒前
JamesPei应助tcf采纳,获得10
24秒前
fengfenghao发布了新的文献求助200
24秒前
25秒前
王新卉完成签到,获得积分10
27秒前
大气的山彤完成签到,获得积分10
27秒前
寒食完成签到,获得积分0
27秒前
天天快乐应助Moonquakes采纳,获得10
28秒前
研友_VZG7GZ应助读书的时候采纳,获得10
28秒前
研友_n2QXPL发布了新的文献求助50
28秒前
29秒前
29秒前
pcr163应助dreamlightzy采纳,获得50
29秒前
31秒前
32秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097872
求助须知:如何正确求助?哪些是违规求助? 3635616
关于积分的说明 11523795
捐赠科研通 3345719
什么是DOI,文献DOI怎么找? 1838925
邀请新用户注册赠送积分活动 906425
科研通“疑难数据库(出版商)”最低求助积分说明 823634