已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-spatiotemporal-resolution PM2.5 forecasting by hybrid deep learning models with ensembled massive heterogeneous monitoring data

均方误差 空气质量指数 自编码 深度学习 卷积神经网络 人工神经网络 计算机科学 平均绝对百分比误差 人工智能 数据挖掘 环境科学 实时计算 气象学 统计 数学 地理
作者
Kang Wu,I-Wen Hsia,Pu-Yun Kow,Li-Chiu Chang,Fi-John Chang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:433: 139825-139825 被引量:1
标识
DOI:10.1016/j.jclepro.2023.139825
摘要

High-resolution real-time air quality forecasting can alert decision-makers and residents about forthcoming air pollution events and refine air quality management. The Environmental Protection Administration in Taiwan has deployed numerous low-cost air quality microsensors near industrial zones lately to facilitate local air quality monitoring. Nevertheless, the frequent occurrence of missing sensor data due to problems of mobile transmission, frontend/backend device malfunction, or other unforeseen issues would raise difficulty in making quick responses to air pollution incidents. This study proposed a hybrid deep learning model (AE-CNN-BP) collaborating an Autoencoder (AE), a Convolutional Neural Network (CNN), and a Back Propagation Neural Network (BPNN) to effectively extract crucial features from big data for making successive high-spatiotemporal-resolution forecasts of PM2.5 concentrations 4 h ahead. The proposed model was trained and tested in three industrial zones densely installed with microsensors in Kaohsiung City of Taiwan. A high pollution incident was selected to evaluate model performance. The results show that the proposed model could reliably produce nice high-spatiotemporal-resolution forecasts for 12 air quality monitoring stations and 485 microsensors, with Coefficient of Determination (R2) values and Root Mean Squared Error (RMSE) of 0.82 (0.76) and 11.05 (12.75) μg/m3 in the training (testing) stage, respectively. For the selected incident, the Mean Absolute Percentage Error (MAPE) values of the proposed model were 22.3% and 27.1% at T+1 and T+4, respectively. This study demonstrates that the proposed deep learning model based on ensemble datasets of sparsely distributed monitoring stations and densely deployed microsensors can offer reliable high-spatiotemporal-resolution air quality forecasts, benefiting environmental studies and informed policymaking by accounting for local-scale variations in PM2.5 concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱尚发布了新的文献求助10
2秒前
3秒前
传奇3应助潇洒清炎采纳,获得10
4秒前
5秒前
笗一一完成签到 ,获得积分10
6秒前
科研通AI5应助徐昊楠采纳,获得10
6秒前
研友_VZG7GZ应助轻松连虎采纳,获得10
7秒前
全栾发布了新的文献求助10
7秒前
HEIKU应助WYN采纳,获得10
8秒前
科研通AI5应助舒适路人采纳,获得10
9秒前
ccccc发布了新的文献求助10
11秒前
是木易呀发布了新的文献求助10
12秒前
Xiao完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
15秒前
今天只做一件事应助cometx采纳,获得50
17秒前
yuhan发布了新的文献求助10
18秒前
西瓜汽水完成签到,获得积分10
18秒前
18秒前
小宋发布了新的文献求助10
19秒前
星辰大海应助Wang采纳,获得10
21秒前
科研通AI5应助舒适路人采纳,获得10
24秒前
芒果布丁完成签到,获得积分10
26秒前
北城完成签到,获得积分10
30秒前
阿童木完成签到,获得积分10
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
34秒前
35秒前
35秒前
35秒前
牛牛向前冲完成签到,获得积分10
35秒前
搜集达人应助科研牛马采纳,获得10
35秒前
36秒前
CodeCraft应助舒适路人采纳,获得10
36秒前
石一完成签到 ,获得积分10
39秒前
40秒前
43秒前
mini昕发布了新的文献求助10
45秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784615
求助须知:如何正确求助?哪些是违规求助? 3329736
关于积分的说明 10243308
捐赠科研通 3045037
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391