亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Comprehensive Study for Predicting Chronic Kidney Disease, Diabetes, Hypertension, and Anemia by Machine Learning and Feature Engineering Techniques

肾脏疾病 糖尿病 逻辑回归 随机森林 人工智能 机器学习 接收机工作特性 医学 特征工程 计算机科学 预测建模 特征(语言学) 贫血 疾病 内科学 数据挖掘 深度学习 哲学 内分泌学 语言学
作者
Parama Sridevi,Masud Rabbani,Sheikh Iqbal Ahamed
标识
DOI:10.1109/icdh60066.2023.00043
摘要

Chronic Kidney Disease, Diabetes, Hypertension, and Anemia are affecting more people these days and causing serious deterioration in health conditions, which can cause death if left undiagnosed and untreated. Machine learning models can play an indispensable role in precisely predicting diseases at an early stage which can help doctors start the disease-management plan early and reduce the suffering of patients and the death rates. In this study, we propose machine learning based Chronic Kidney Disease, Diabetes, Hypertension, and Anemia Prediction. We analyzed Chronic_Kidney_Disease Data Set from the UCI repository. After data-prepossessing, we created four new datasets from the initial dataset for predicting the four diseases. We applied Feature Engineering on every dataset to identify the best features. We developed five machine learning based models and compared the models’ performance before and after Feature Engineering for every dataset. The Random Forest model performs best for chronic kidney disease prediction with an accuracy of 99.5%, validation score of 99.0%, and ROC-AUC score of 1.0. The Logistic Regression model gives the highest accuracy of 88.8%, validation score of 82.0%, and ROC-AUC score of 0.94 for predicting diabetes. For hypertension prediction, XGBoost outperforms other models with an accuracy of 88.8%, validation score of 83.2%, and ROCAUC score of 0.95. XGboost model best-predicted anemia with an accuracy of 88.8%, validation score of 91%, and ROC-AUC score of 0.91. Since the developed models can accurately perform these diseases’ predictions, we believe this study will be beneficial for the diagnosis and management of these diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
41秒前
嘻嘻完成签到,获得积分10
59秒前
Lucas应助任性的一斩采纳,获得10
1分钟前
sweety01232发布了新的文献求助30
1分钟前
1分钟前
彭于晏应助任性的一斩采纳,获得10
1分钟前
追三完成签到 ,获得积分10
2分钟前
Everglow完成签到,获得积分10
2分钟前
SciGPT应助任性的一斩采纳,获得10
2分钟前
孤独君浩完成签到 ,获得积分10
2分钟前
完美世界应助dawn采纳,获得10
3分钟前
3分钟前
herococa应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
健忘雅蕊完成签到 ,获得积分10
4分钟前
yxy发布了新的文献求助10
4分钟前
不秃燃的小老弟完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
情怀应助yxy采纳,获得10
5分钟前
dawn发布了新的文献求助10
5分钟前
云飞扬应助王大可采纳,获得10
5分钟前
5分钟前
我是老大应助你好采纳,获得10
5分钟前
Echo完成签到,获得积分10
5分钟前
5分钟前
筱筱完成签到 ,获得积分10
5分钟前
5分钟前
Xenia完成签到 ,获得积分10
5分钟前
你好发布了新的文献求助10
5分钟前
善学以致用应助风华正茂采纳,获得10
5分钟前
ZYP应助科研通管家采纳,获得10
5分钟前
herococa应助科研通管家采纳,获得10
5分钟前
Owen应助科研通管家采纳,获得10
5分钟前
5分钟前
Asofi完成签到,获得积分10
6分钟前
深情安青应助口香糖采纳,获得10
6分钟前
美罗培南完成签到,获得积分10
6分钟前
夏蓉完成签到,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946174
求助须知:如何正确求助?哪些是违规求助? 3491060
关于积分的说明 11058785
捐赠科研通 3222016
什么是DOI,文献DOI怎么找? 1780723
邀请新用户注册赠送积分活动 865798
科研通“疑难数据库(出版商)”最低求助积分说明 800063