亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FRCD: Feature Refine Change Detection Network for Remote Sensing Images

增采样 变更检测 计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 特征提取 代表(政治) 模式识别(心理学) 编码(集合论) 图像(数学) 人工神经网络 哲学 语言学 集合(抽象数据类型) 政治 政治学 法学 程序设计语言
作者
Z.C. Wang,Zongxu Pan,Yuxin Hu,Bin Lei
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3303200
摘要

Change detection plays an important role in Earth surface analysis. Current change detection methods have achieved good performance in large flat areas, but change detection of detailed parts is still a great challenge, and the loss of detail causes many faults around the change boundaries and on small objects. By analyzing the feature map of the widely used U-Net architecture in existing methods, we ascribe the detail loss to the depletion of detailed features during the top-to-down delivery in the U-Net architecture. The Feature Refine Change Detection(FRCD) model is proposed in which the detection results are predicted directly from the multiscale features instead of the U-Net architecture. By direct prediction, the representation ability of details is enhanced, and thus the detection accuracy of boundaries and small objects improves. Moreover, the normal upsampling in direct prediction is replaced with the deformable upsampling, which delivers detailed information from the low-level to the high-level via the deformable convolution, allowing the results to further fit boundaries in the FRCD model. Experimental results on two datasets confirm the effectiveness of FRCD compared to state-of-the-art methods, and the change detection results of boundaries and small objects are improved significantly by the proposed method. Code will be available after the acceptance of the paper in https://github.com/ijnokml/cdfr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
不了了发布了新的文献求助10
9秒前
粽子完成签到,获得积分10
11秒前
orixero应助不了了采纳,获得10
20秒前
35秒前
Roxy发布了新的文献求助10
38秒前
丘比特应助核桃采纳,获得10
42秒前
43秒前
万能图书馆应助Roxy采纳,获得10
49秒前
赘婿应助yqb采纳,获得10
58秒前
1分钟前
yqb发布了新的文献求助10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得100
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
徐凤年完成签到,获得积分10
1分钟前
1分钟前
DYL完成签到,获得积分10
1分钟前
sean118完成签到 ,获得积分10
1分钟前
1分钟前
秀xiu完成签到,获得积分10
1分钟前
小付发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
月满西楼发布了新的文献求助10
2分钟前
杰尼龟发布了新的文献求助10
2分钟前
2分钟前
月满西楼完成签到,获得积分10
2分钟前
不了了发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
yqb发布了新的文献求助10
2分钟前
Hillson完成签到,获得积分10
2分钟前
务实书包完成签到,获得积分10
2分钟前
慕青应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798486
求助须知:如何正确求助?哪些是违规求助? 3343957
关于积分的说明 10318137
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679619
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763314