已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Autonomous Path Planning of AGV Obstacle Avoidance Based on Improved Q-learning

运动规划 路径(计算) 平滑的 自动化 障碍物 计算机科学 避障 工程类 人工智能 移动机器人 机器人 计算机网络 机械工程 法学 政治学 计算机视觉
作者
Li Yan,Lili Yang,Yufei Li
标识
DOI:10.1109/iccnea60107.2023.00069
摘要

"Industry 4.0" and" Made in China 2025" have promoted the development of industrial automation equipment industry, and AGVs play a key role in warehousing intelligence and transportation efficiency. Research on AGV path planning is of great significance and application value for efficient, safe and high-quality path planning. Aiming at the problem of material transportation path planning in H company's static workshop, this paper proposes a path obstacle avoidance planning method based on improved Q learning algorithm. By optimizing Q learning parameters and introducing B-spline curve fitting technology to improve the algorithm, the AGV path is planned more effectively, and the operation efficiency and stability are improved. Through the analysis of simulation model verification results, the path length is 20.8995 meters before path smoothing and 21.2756 meters after path smoothing, with a small increase and little impact on work efficiency. Path smoothing reduces turning points and turning points, avoids path overlap and misalignment, and improves path efficiency. After the path smoothing improvement, the travel time was reduced from 15.8465 minutes to 10.1471 minutes, which was significantly reduced. Improve warehouse management level and transportation efficiency, and contribute to the development of industrial automation equipment industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助WzH采纳,获得10
刚刚
SciGPT应助Wish采纳,获得10
刚刚
1秒前
白三完成签到,获得积分10
4秒前
wanci应助Moo5_zzZ采纳,获得50
4秒前
柴桑青木应助切克闹采纳,获得10
4秒前
Nefelibata完成签到,获得积分10
8秒前
lixiaolu完成签到 ,获得积分10
8秒前
高大冷菱完成签到 ,获得积分10
11秒前
11秒前
科研通AI5应助白三采纳,获得10
12秒前
漱石枕流完成签到 ,获得积分10
14秒前
斯文败类应助纯真玉兰采纳,获得10
16秒前
16秒前
Alex应助科研通管家采纳,获得30
17秒前
17秒前
Chaos应助科研通管家采纳,获得10
17秒前
17秒前
19秒前
19秒前
22秒前
WzH发布了新的文献求助10
22秒前
芝士雪豹发布了新的文献求助10
23秒前
Moo5_zzZ发布了新的文献求助50
23秒前
文艺的曼柔完成签到 ,获得积分10
26秒前
hiaoyi完成签到 ,获得积分0
32秒前
35秒前
35秒前
纯真玉兰发布了新的文献求助10
41秒前
Qwe完成签到 ,获得积分10
42秒前
酶酶酶完成签到,获得积分10
45秒前
46秒前
一二完成签到 ,获得积分10
48秒前
汉堡包应助伶俐的甜瓜采纳,获得10
49秒前
ttt完成签到,获得积分10
49秒前
传奇3应助喜乐采纳,获得10
50秒前
seven完成签到,获得积分10
52秒前
万能图书馆应助Moo5_zzZ采纳,获得10
52秒前
ttt发布了新的文献求助10
52秒前
今后应助喜乐采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4497499
求助须知:如何正确求助?哪些是违规求助? 3949161
关于积分的说明 12243871
捐赠科研通 3607112
什么是DOI,文献DOI怎么找? 1984233
邀请新用户注册赠送积分活动 1020642
科研通“疑难数据库(出版商)”最低求助积分说明 913079