基线(sea)
信号(编程语言)
水准点(测量)
概率逻辑
高斯过程
拉曼光谱
高斯分布
光谱学
计算机科学
近红外光谱
过程(计算)
生物系统
人工智能
模式识别(心理学)
化学
光学
物理
计算化学
地质学
操作系统
程序设计语言
海洋学
生物
量子力学
大地测量学
作者
David Hansen,Tommy Sonne Alstrøm,Mikkel N. Schmidt
标识
DOI:10.1016/j.chemolab.2023.104974
摘要
Vibrational spectroscopy techniques enable accurate chemical detection and quantification, but the extraction of spectral peak parameters is frequently hampered by an underlying baseline. Because the signal and baseline are additive, it is difficult to distinguish between signal peaks and baseline effects when the baseline is not smooth. Using surface enhanced Raman spectroscopy (SERS) and near-infrared (NIR) spectroscopy as examples, we show how to estimate the signal and the baseline jointly while imposing a high-capacity non-stationary Gaussian process on the baseline. This allows us to both obtain accurate estimation and meaningful uncertainty estimates on interpretable peak parameters. We demonstrate this on artificially generated SERS maps, a challenging real-world SERS case, and a benchmark NIR dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI