Computational Design and Experimental Validation of Enzyme Mimicking Cu-Based Metal–Organic Frameworks for the Reduction of CO2 into C2 Products: C–C Coupling Promoted by Ligand Modulation and the Optimal Cu–Cu Distance

化学 催化作用 金属有机骨架 密度泛函理论 选择性 吸附 配体(生物化学) 电极 金属 组合化学 物理化学 无机化学 化学工程 计算化学 有机化学 受体 工程类 生物化学
作者
Xin Mao,Wanbing Gong,Fu Yang,Jiayi Li,Xinyu Wang,Anthony P. O’Mullane,Yujie Xiong,Aijun Du
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (39): 21442-21453 被引量:28
标识
DOI:10.1021/jacs.3c07108
摘要

While extensive research has been conducted on the conversion of CO2 to C1 products, the synthesis of C2 products still strongly depends on the Cu electrode. One main issue hindering the C2 production on Cu-based catalysts is the lack of an appropriate Cu–Cu distance to provide the ideal platform for the C–C coupling process. Herein, we identify a lab-synthesized artificial enzyme with an optimal Cu–Cu distance, named MIL-53 (Cu) (MIL= Materials of Institute Lavoisier), for CO2 conversion by using a density functional theory method. By substituting the ligands in the porous MIL-53 (Cu) nanozyme with functional groups from electron-donating NH2 to electron-withdrawing NO2, the Cu–Cu distance and charge of Cu can be significantly tuned, thus modulating the adsorption strength of CO2 that impacts the catalytic activity. MIL-53 (Cu) decorated with a COOH-ligand is found to be located at the top of a volcano-shaped plot and exhibits the highest activity and selectivity to reduce CO2 to CH3CH2OH with a limiting potential of only 0.47 eV. In addition, experiments were carried out to successfully synthesize COOH-decorated MIL-53(Cu) to prove its high catalytic performance for C2 production, which resulted in a −55.5% faradic efficiency at −1.19 V vs RHE, which is much higher than the faradic efficiency of the benchmark Cu electrode of 35.7% at −1.05 V vs RHE. Our results demonstrate that the biologically inspired enzyme engineering approach can redefine the structure–activity relationships of nanozyme catalysts and can also provide a new understanding of the catalytic mechanisms in natural enzymes toward the development of highly active and selective artificial nanozymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lost发布了新的文献求助10
2秒前
1z6发布了新的文献求助10
2秒前
星星发布了新的文献求助10
2秒前
英姑应助SQ采纳,获得10
4秒前
5秒前
认真的半山完成签到,获得积分20
5秒前
7秒前
ll发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
lcx0779完成签到 ,获得积分10
9秒前
这个大头张呀完成签到,获得积分10
10秒前
10秒前
10秒前
Calvin完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
lost完成签到,获得积分10
13秒前
树池完成签到,获得积分10
14秒前
科研文献搬运工完成签到,获得积分0
15秒前
15秒前
15秒前
jinyue完成签到,获得积分10
15秒前
15秒前
16秒前
萨芬撒发布了新的文献求助10
16秒前
萨芬撒发布了新的文献求助10
16秒前
萨芬撒发布了新的文献求助10
16秒前
萨芬撒发布了新的文献求助10
16秒前
萨芬撒发布了新的文献求助10
16秒前
萨芬撒发布了新的文献求助10
16秒前
雨季佯完成签到,获得积分10
18秒前
19秒前
苏雨康发布了新的文献求助10
20秒前
20秒前
九黎完成签到 ,获得积分10
20秒前
CipherSage应助mia采纳,获得10
22秒前
烂漫耳机发布了新的文献求助10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976