REAL-TIME FORECASTING OF KEY COKING COAL QUALITY PARAMETERS USING NEURAL NETWORKS AND ARTIFICIAL INTELLIGENCE

焦炭 质量(理念) 环境科学 人工神经网络 工艺工程 煤矿开采 石油工程 计算机科学 采矿工程 废物管理 工程类 人工智能 哲学 认识论
作者
Artur Dyczko
出处
期刊:The Mining-Geological-Petroleum Engineering Bulletin [Faculty of Mining, Geology and Petroleum Engineering]
卷期号:38 (3): 105-117 被引量:33
标识
DOI:10.17794/rgn.2023.3.9
摘要

High quality coke is a key raw material for the metallurgical industry. The characteristics of the coal have a significant influence on the parameters of the coke produced and, consequently, on the valuation of coal deposits and the economic assessment of mining projects. Predicting the quality of coking coal allows for the optimisation of production processes, including the planning and management of operations and the early detection of quality problems. In this study, using the principles of a smart mine, it is proposed to determine the quality of coal based on the combination of mining and geological conditions of mineral deposits and its quality indicators. Possible interrelationships between the quality of the coal in the deposit and the characteristics of the final product have been identified. A neural network is used to determine the priority of individual indicators that have a significant impact on the quality of coking coal. An important part of the research is its practical implementation in the conditions of the Jastrzębska Spółka Węglowa SA. Qualitative and quantitative parameters of coking coals were obtained for each mine of the region by the method of sampling and statistical processing of data such as: degree of metamorphism, thickness, deviation of volatile substances, presence of phosphorus, ash content, etc. For their evaluation, the Group Method of Data Handling was used to compare the factors of quality indicators depending on the priority of influence on the final characteristics of the coking coal. Based on the results obtained, it is shown that not all coal quality indicators have a significant impact on the quality of the final product. The study shows that it is possible to predict the main indicators (CRI – Coke Reactivity Index, CSR – Coke Strength after Reaction) of coke quality using neural networks based on a larger number of coal quality parameters and to eliminate parameters that have virtually no influence on the value of the final product. This method can also be used to improve the results of economic valuation of a deposit and to better plan exploration and mining operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助jinshiyu58采纳,获得10
1秒前
1秒前
Jasper应助量子星尘采纳,获得10
1秒前
orixero应助量子星尘采纳,获得10
1秒前
1秒前
happy发布了新的文献求助10
1秒前
传奇3应助量子星尘采纳,获得10
1秒前
丰知然应助负责冰凡采纳,获得10
2秒前
End完成签到 ,获得积分10
2秒前
3秒前
Versa完成签到,获得积分10
3秒前
dxd500874发布了新的文献求助10
4秒前
Hello应助量子星尘采纳,获得10
4秒前
烟花应助荷包蛋采纳,获得10
4秒前
星辰大海应助zaphkiel采纳,获得10
4秒前
YXHTCM发布了新的文献求助10
4秒前
打打应助量子星尘采纳,获得10
5秒前
小吴同学来啦完成签到,获得积分10
5秒前
zp560发布了新的文献求助10
6秒前
6秒前
S.发布了新的文献求助10
6秒前
6秒前
快乐难敌完成签到,获得积分10
6秒前
7秒前
汉堡包应助量子星尘采纳,获得10
7秒前
温婉的笑阳完成签到,获得积分10
7秒前
7秒前
田様应助psycho采纳,获得10
7秒前
haha完成签到 ,获得积分10
7秒前
花Cheung完成签到,获得积分10
8秒前
LEMONS完成签到,获得积分10
8秒前
9秒前
麦乐提完成签到,获得积分10
9秒前
10秒前
张成伦完成签到,获得积分10
10秒前
善学以致用应助风旅采纳,获得10
10秒前
开朗眼神完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886200
求助须知:如何正确求助?哪些是违规求助? 3428338
关于积分的说明 10759903
捐赠科研通 3153208
什么是DOI,文献DOI怎么找? 1740953
邀请新用户注册赠送积分活动 840399
科研通“疑难数据库(出版商)”最低求助积分说明 785378