Deep computer vision with artificial intelligence based sign language recognition to assist hearing and speech-impaired individuals

听力受损者 手语 语音识别 计算机科学 人工智能 听力学 医学 语言学 哲学
作者
Abrar Almjally,Wafa Almukadi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-09106-8
摘要

Sign language (SL) is a non-verbal language applied by deaf and hard-of-hearing individuals for daily communication between them. Studies in SL recognition (SLR) have recently become essential developments. The current successes present the base for upcoming applications to assist the combination of deaf and hard-of-hearing people. SLR could help break down the obstacles for SL users in the community. In general, glove-based and vision-based techniques are the dual major types measured for SLR methods. Several investigators presented various techniques with significant development by deep learning (DL) models in computer vision (CV) and became performed to SLR. This study presents a novel Harris Hawk Optimization-Based Deep Learning Model for Sign Language Recognition (HHODLM-SLR) technique. The HHODLM-SLR technique mainly concentrates on the advanced automatic detection and classification of SL for hearing and speech-impaired individuals. Initially, the image pre-processing stage applies bilateral filtering (BF) to eliminate noise in an input image dataset. Furthermore, the ResNet-152 model is employed for the feature extraction process. The bidirectional long short-term memory (Bi-LSTM) model is used for SLR. Finally, the Harris hawk optimization (HHO) approach optimally adjusts the Bi-LSTM approach's hyperparameter values, resulting in more excellent classification performance. The efficiency of the HHODLM-SLR methodology is validated under the SL dataset. The experimental analysis of the HHODLM-SLR methodology portrayed a superior accuracy value of 98.95% over existing techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的飞双完成签到,获得积分20
刚刚
刚刚
刚刚
yijun发布了新的文献求助10
1秒前
繁笙发布了新的文献求助10
1秒前
传奇3应助木卓采纳,获得10
1秒前
lisa发布了新的文献求助10
1秒前
海风发布了新的文献求助10
1秒前
拼搏流沙发布了新的文献求助10
1秒前
sleepingfish应助灵巧水绿采纳,获得10
1秒前
单纯的书兰完成签到,获得积分10
1秒前
gj发布了新的文献求助10
1秒前
zhangfuchao发布了新的文献求助20
2秒前
2秒前
善学以致用应助logo采纳,获得30
2秒前
2秒前
科研通AI2S应助鸵鸟女士采纳,获得10
2秒前
Xana完成签到,获得积分10
2秒前
3秒前
我有一个超能力完成签到,获得积分10
3秒前
大个应助cc采纳,获得10
3秒前
思源应助wangxin采纳,获得10
3秒前
情怀应助zzrg采纳,获得10
3秒前
优美元蝶完成签到,获得积分20
4秒前
在水一方应助小阿博采纳,获得10
4秒前
as完成签到,获得积分10
4秒前
天天快乐应助安静海莲采纳,获得10
4秒前
5秒前
ww发布了新的文献求助10
6秒前
tang完成签到,获得积分10
6秒前
perovskite发布了新的文献求助10
6秒前
杨66发布了新的文献求助30
7秒前
华仔应助limbo采纳,获得10
7秒前
小瓜发布了新的文献求助20
7秒前
7秒前
8秒前
8秒前
海风完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478537
求助须知:如何正确求助?哪些是违规求助? 3936102
关于积分的说明 12211349
捐赠科研通 3590703
什么是DOI,文献DOI怎么找? 1974488
邀请新用户注册赠送积分活动 1011737
科研通“疑难数据库(出版商)”最低求助积分说明 905211