亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning‐Based Model Predictive Path Integral Control for Obstacle Avoidance of Autonomous Underwater Vehicles

避障 强化学习 模型预测控制 水下 避碰 计算机科学 路径(计算) 控制(管理) 控制理论(社会学) 人工智能 控制工程 工程类 移动机器人 机器人 地理 考古 碰撞 程序设计语言 计算机安全
作者
Jintao Zhao,Tao Liu,Junhao Huang
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:42 (8): 4337-4352
标识
DOI:10.1002/rob.70006
摘要

ABSTRACT Autonomous underwater vehicles (AUVs) face substantial challenges in obstacle avoidance due to the complex, dynamic nature of underwater environments and inherent sensing limitations. This study introduces a novel optimization framework that addresses these challenges by synergistically integrating advanced sampling strategies with reinforcement learning (RL) and model predictive path integral (MPPI) algorithms. The proposed framework strategically leverages the complementary strengths of both approaches: MPPI's proficiency in short‐term trajectory prediction combined with RL's exploratory capabilities and end‐to‐end training paradigm. This integration enables AUVs to rapidly adapt to environmental perturbations, make efficient real‐time obstacle avoidance decisions, continuously adjust to increasingly complex underwater scenarios, and achieve long‐term safe navigation objectives. To evaluate the efficacy of this RL‐MPPI hybrid approach, comprehensive numerical simulations were conducted across diverse underwater environmental conditions, encompassing both static and dynamic obstacles. The simulation results demonstrate enhanced adaptability and responsiveness in complex underwater environments, improved predictive accuracy and stability in obstacle avoidance maneuvers, and effective navigation through static and dynamic underwater scenarios while maintaining robust predictive characteristics. Quantitatively, the proposed method reduces the average cost value by 9.3% and average execution time by 2.9% compared with traditional MPPI in water‐free environments. Furthermore, in the presence of unknown water flow, it achieves a 7.2% reduction in average cost value and a 1.6% decrease in average execution time. This study contributes to the advancement of underwater robotics by offering a robust, adaptive, and computationally efficient approach to collision prevention for AUVs. The proposed framework demonstrates considerable promise for enhancing AUV capabilities in safe and efficient navigation through increasingly challenging underwater environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
浮游应助科研通管家采纳,获得10
7秒前
嘻嘻哈哈应助科研通管家采纳,获得10
7秒前
52秒前
1分钟前
yeah完成签到 ,获得积分10
1分钟前
1分钟前
田様应助whz采纳,获得10
1分钟前
1分钟前
1分钟前
ramsey33完成签到 ,获得积分10
1分钟前
whz发布了新的文献求助10
1分钟前
ala完成签到,获得积分10
1分钟前
1分钟前
whz完成签到,获得积分10
1分钟前
华仔应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
2分钟前
FJXTY发布了新的文献求助10
2分钟前
热情依白完成签到 ,获得积分10
2分钟前
2分钟前
FJXTY完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yihuifa发布了新的文献求助10
2分钟前
2分钟前
3分钟前
slz发布了新的文献求助10
3分钟前
Thanks完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
Proxac完成签到,获得积分10
4分钟前
Proxac发布了新的文献求助20
4分钟前
4分钟前
科研通AI6应助evermore采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482443
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512328
什么是DOI,文献DOI怎么找? 2472820
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553