亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Radiology Report Generation via Multi-Phased Supervision

医学物理学 医学影像学 计算机科学 放射科 医学
作者
Zailong Chen,Yingshu Li,Zhanyu Wang,Peng Gao,Johan Barthélemy,Luping Zhou,Lei Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (11): 4666-4677
标识
DOI:10.1109/tmi.2025.3580659
摘要

Radiology report generation using large language models has recently produced reports with more realistic styles and better language fluency. However, their clinical accuracy remains inadequate. Considering the significant imbalance between clinical phrases and general descriptions in a report, we argue that using an entire report for supervision is problematic as it fails to emphasize the crucial clinical phrases, which require focused learning. To address this issue, we propose a multi-phased supervision method, inspired by the spirit of curriculum learning where models are trained by gradually increasing task complexity. Our approach organizes the learning process into structured phases at different levels of semantical granularity, each building on the previous one to enhance the model. During the first phase, disease labels are used to supervise the model, equipping it with the ability to identify underlying diseases. The second phase progresses to use entity-relation triples to guide the model to describe associated clinical findings. Finally, in the third phase, we introduce conventional whole-report-based supervision to quickly adapt the model for report generation. Throughout the phased training, the model remains the same and consistently operates in the generation mode. As experimentally demonstrated, this proposed change in the way of supervision enhances report generation, achieving state-of-the-art performance in both language fluency and clinical accuracy. Our work underscores the importance of training process design in radiology report generation. Our code is available on https://github.com/zailongchen/MultiP-R2Gen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
6秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
28秒前
44秒前
阳光哈密瓜完成签到,获得积分10
45秒前
yunyii发布了新的文献求助10
49秒前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
1分钟前
勾是完成签到,获得积分20
1分钟前
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
隐形曼青应助勾是采纳,获得30
1分钟前
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
勾是发布了新的文献求助30
2分钟前
老芋头完成签到,获得积分10
3分钟前
情怀应助ZH的天方夜谭采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
oweing发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
老迟到的土豆完成签到 ,获得积分10
4分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503030
求助须知:如何正确求助?哪些是违规求助? 4598655
关于积分的说明 14464714
捐赠科研通 4532328
什么是DOI,文献DOI怎么找? 2483882
邀请新用户注册赠送积分活动 1467111
关于科研通互助平台的介绍 1439851