Mechanism-Driven Improved SVMD: An Indirect Approach for Rail Corrugation Detection Using Axle Box Acceleration

加速度 计算机科学 分类器(UML) 人工智能 模式识别(心理学) 波长 工程类 结构工程 物理 光学 经典力学
作者
Peishan Liu,Jianwei Yang,Changdong Liu,Yue Zhao,zhongshuo hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106106-106106 被引量:2
标识
DOI:10.1088/1361-6501/ad56ae
摘要

Abstract Addressing the challenge of the current inability to qualitatively identify rail corrugation damage accurately from axle box acceleration data, this study proposes a novel approach. To indirectly identify rail corrugation from axle box acceleration, we introduce an improved successive variational mode decomposition (SVMD) algorithm, coupled with a deep learning model for corrugation recognition. First, a numerical model of the vehicle-rail-track slab system is established, considering rail corrugation. Indicator analysis is integrated into the SVMD. The improved SVMD is employed to decompose and reconstruct axle box acceleration, achieving noise reduction and extraction of useful components. Next, we apply the fast Continuous Wavelet Transform analysis method to effectively transform one-dimensional data into two-dimensional images. Finally, the You Only Look Once (YOLO) model serves as a classifier for the classification and recognition of corrugation with different wavelengths. The results demonstrate that the mechanism-driven improved SVMD effectively extracts corrugation components from axle box acceleration, while the YOLO model achieves rapid and efficient identification and classification of corrugation with different wavelengths. The results show that compared with other traditional models, the training time of the YOLO model is 60%–90% of the training time of the traditional algorithm, and the Recall rate is 1.15–1.45 times that of the traditional algorithm. In terms of wavelength identification, the YOLO model has a recognition rate of 98% for different wavelengths. The proposed approach offers an innovative and efficient solution for identifying rail corrugation damage in axle box acceleration data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
qiongqiong完成签到,获得积分10
刚刚
飘逸数据线完成签到,获得积分10
1秒前
1秒前
就发酵罐完成签到,获得积分10
1秒前
自信胡萝卜完成签到,获得积分20
1秒前
Ch185完成签到,获得积分10
1秒前
guyu完成签到,获得积分10
2秒前
沉默的友安完成签到 ,获得积分10
3秒前
leclerc完成签到,获得积分10
3秒前
梅花鹿完成签到,获得积分10
3秒前
马美丽完成签到 ,获得积分10
3秒前
3秒前
Bihhh完成签到 ,获得积分10
3秒前
笨笨蜜蜂完成签到,获得积分10
3秒前
4秒前
tramp应助xx采纳,获得10
4秒前
斯文起眸发布了新的文献求助10
4秒前
许容完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
一点都不慌张先生完成签到,获得积分10
7秒前
7秒前
phw完成签到,获得积分10
8秒前
keyan完成签到,获得积分10
8秒前
小海完成签到,获得积分10
8秒前
杨道之发布了新的文献求助10
8秒前
流沙完成签到,获得积分10
8秒前
Minguk完成签到,获得积分20
8秒前
9秒前
Jackson_Cai完成签到,获得积分10
9秒前
FashionBoy应助不拖延的兔子采纳,获得10
10秒前
午后两点最热完成签到,获得积分10
10秒前
l玖应助要减肥钻石采纳,获得10
10秒前
我叫小小孙呀完成签到,获得积分10
10秒前
唐褚发布了新的文献求助50
11秒前
zhenya完成签到,获得积分10
12秒前
风一样的风干肠完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946312
求助须知:如何正确求助?哪些是违规求助? 3491370
关于积分的说明 11060207
捐赠科研通 3222204
什么是DOI,文献DOI怎么找? 1780931
邀请新用户注册赠送积分活动 865915
科研通“疑难数据库(出版商)”最低求助积分说明 800083