NanoMUD: Profiling of pseudouridine and N1-methylpseudouridine using Oxford Nanopore direct RNA sequencing

假尿苷 纳米孔 计算生物学 核糖核酸 化学 纳米技术 生物系统 生物 生物化学 材料科学 转移RNA 基因
作者
Yuxin Zhang,Huayuan Yan,Zhen Wei,Haifeng Hong,Daiyun Huang,Guopeng Liu,Qianshan Qin,Rong Rong,Peng Gao,Jia Meng,Bo Ying
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:270: 132433-132433 被引量:2
标识
DOI:10.1016/j.ijbiomac.2024.132433
摘要

Nanopore direct RNA sequencing provided a promising solution for unraveling the landscapes of modifications on single RNA molecules. Here, we proposed NanoMUD, a computational framework for predicting the RNA pseudouridine modification (Ψ) and its methylated analog N1-methylpseudouridine (m1Ψ), which have critical application in mRNA vaccination, at single-base and single-molecule resolution from direct RNA sequencing data. Electric signal features were fed into a bidirectional LSTM neural network to achieve improved accuracy and predictive capabilities. Motif-specific models (NNUNN, N = A, C, U or G) were trained based on features extracted from designed dataset and achieved superior performance on molecule-level modification prediction (Ψ models: min AUC = 0.86, max AUC = 0.99; m1Ψ models: min AUC = 0.87, max AUC = 0.99). We then aggregated read-level predictions for site stoichiometry estimation. Given the observed sequence-dependent bias in model performance, we trained regression models based on the distribution of modification probabilities for sites with known stoichiometry. The distribution-based site stoichiometry estimation method allows unbiased comparison between different contexts. To demonstrate the feasibility of our work, three case studies on both in vitro and in vivo transcribed RNAs were presented. NanoMUD will make a powerful tool to facilitate the research on modified therapeutic IVT RNAs and provides useful insight to the landscape and stoichiometry of pseudouridine and N1-pseudouridine on in vivo transcribed RNA species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
拯救香松完成签到,获得积分10
2秒前
4秒前
FashionBoy应助bao采纳,获得10
4秒前
像我这样的人完成签到,获得积分20
4秒前
孙颂尧发布了新的文献求助10
6秒前
6秒前
qing1245发布了新的文献求助10
6秒前
Dawn完成签到 ,获得积分10
7秒前
7秒前
8秒前
芒果不忙发布了新的文献求助10
9秒前
10秒前
11秒前
孙颂尧完成签到,获得积分10
11秒前
0514gr发布了新的文献求助10
12秒前
kjz发布了新的文献求助10
13秒前
13秒前
情怀应助最长的旅途采纳,获得10
14秒前
酷波er应助hyhyhyhy采纳,获得10
16秒前
Jasper应助辛坦夫采纳,获得10
16秒前
飞快的枕头完成签到,获得积分10
17秒前
17秒前
bao发布了新的文献求助10
18秒前
摩天大楼完成签到,获得积分10
19秒前
科研通AI5应助迷人以寒采纳,获得10
20秒前
echo完成签到 ,获得积分10
20秒前
研友_Y59785应助科研通管家采纳,获得10
22秒前
U2应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
23秒前
26秒前
xeason发布了新的文献求助10
26秒前
27秒前
rqy关闭了rqy文献求助
28秒前
29秒前
微笑的冰烟完成签到,获得积分10
29秒前
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783335
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237467
捐赠科研通 3043806
什么是DOI,文献DOI怎么找? 1670653
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759139