已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

STFEformer: Spatial–Temporal Fusion Embedding Transformer for Traffic Flow Prediction

计算机科学 融合 变压器 人工智能 电气工程 工程类 语言学 哲学 电压
作者
Hanqing Yang,Sen Wei,Yuanqing Wang
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (10): 4325-4325 被引量:6
标识
DOI:10.3390/app14104325
摘要

In the realm of Intelligent Transportation Systems (ITSs), traffic flow prediction is crucial for multiple applications. The primary challenge in traffic flow prediction lies in the handling and modeling of the intricate spatial–temporal correlations inherent in transport data. In recent years, many studies have focused on developing various Spatial–Temporal Graph Neural Networks (STGNNs), and researchers have also begun to explore the application of transformers to capture spatial–temporal correlations in traffic data. However, GNN-based methods mainly focus on modeling spatial correlations statically, which significantly limits their capacity to discover dynamic and long-range spatial patterns. Transformer-based methods have not sufficiently extracted the comprehensive representation of traffic data features. To explore dynamic spatial dependencies and comprehensively characterize traffic data, the Spatial–Temporal Fusion Embedding Transformer (STFEformer) is proposed for traffic flow prediction. Specifically, we propose a fusion embedding layer to capture and fuse both native information and spatial–temporal features, aiming to achieve a comprehensive representation of traffic data characteristics. Then, we introduce a spatial self-attention module designed to enhance detection of dynamic and long-range spatial correlations by focusing on interactions between similar nodes. Extensive experiments conducted on three real-world datasets demonstrate that STFEformer significantly outperforms various baseline models, notably achieving up to a 5.6% reduction in Mean Absolute Error (MAE) on the PeMS08 dataset compared to the next-best model. Furthermore, the results of ablation experiments and visualizations are employed to clarify and highlight our model’s performance. STFEformer represents a meaningful advancement in traffic flow prediction, potentially influencing future research and applications in ITSs by providing a more robust framework for managing and analyzing traffic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李_小_八完成签到,获得积分10
2秒前
insomnia417完成签到,获得积分0
3秒前
龙叶静完成签到 ,获得积分10
3秒前
4秒前
王xingxing完成签到 ,获得积分10
4秒前
kjlee完成签到,获得积分10
4秒前
尚尚尚发布了新的文献求助10
7秒前
Ania99完成签到 ,获得积分10
9秒前
LingYi发布了新的文献求助10
12秒前
bkagyin应助莫奈采纳,获得10
12秒前
大模型应助尚尚尚采纳,获得10
13秒前
wei完成签到 ,获得积分10
13秒前
一卷钢丝球完成签到 ,获得积分10
14秒前
大羊完成签到 ,获得积分10
15秒前
mumumuzzz完成签到,获得积分10
16秒前
17秒前
布曲完成签到 ,获得积分10
17秒前
cappuccino完成签到 ,获得积分10
18秒前
可爱安白完成签到,获得积分10
19秒前
19秒前
mbq完成签到,获得积分10
22秒前
JUNE完成签到,获得积分20
22秒前
22秒前
zw完成签到 ,获得积分10
23秒前
23秒前
呆萌念云完成签到 ,获得积分10
23秒前
wyx发布了新的文献求助20
23秒前
赘婿应助yr采纳,获得10
24秒前
认真的寒香完成签到,获得积分10
25秒前
25秒前
25秒前
26秒前
自由的氧化铝完成签到 ,获得积分10
27秒前
畅快寒云发布了新的文献求助10
27秒前
偷看星星完成签到 ,获得积分10
28秒前
GingerF完成签到,获得积分0
28秒前
哈比兽发布了新的文献求助10
30秒前
乐正向东完成签到 ,获得积分10
30秒前
赘婿应助haha采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422298
求助须知:如何正确求助?哪些是违规求助? 4537266
关于积分的说明 14156626
捐赠科研通 4453732
什么是DOI,文献DOI怎么找? 2443067
邀请新用户注册赠送积分活动 1434451
关于科研通互助平台的介绍 1411499

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10