AIM-Bone: Texture Discrepancy Generation and Localization for Generalized Deepfake Detection

计算机科学 人工智能 纹理(宇宙学) 计算机视觉 噪音(视频) 面子(社会学概念) 编码器 纹理合成 鉴别器 模式识别(心理学) 滤波器(信号处理) 光学(聚焦) 图像(数学) 样品(材料) 图像纹理 图像处理 社会学 物理 社会科学 化学 光学 操作系统 探测器 电信 色谱法
作者
Boyuan Liu,Xin Zhang,Hefei Ling,Zongyi Li,Runsheng Wang,H. X. Zhang,Ping Li
出处
期刊:IEEE transactions on biometrics, behavior, and identity science [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tbiom.2025.3526655
摘要

Deep synthesis multimedia content, especially human face manipulation poses a risk of visual and auditory confusion, highlighting the call for generalized face forgery detection methods. In this paper, we propose a novel method for fake sample synthesis, along with a dual auto-encoder network for generalized deepfake detection. First, we delve into the texture discrepancy between tampered and unperturbed regions within forged images and impose models to learn such features by adopting Augmentation Inside Masks (AIM). It is capable of sabotaging the texture consistency within a single real image and generating textures that are commonly seen in fake images. It is realized by exhibiting forgery clues of discrepancy in noise patterns, colors, resolutions, and especially the existence of GAN (Generative Adversarial Network) features, including GAN textures, deconvolution traces, GAN distribution, etc. To the best of our knowledge, this work is the first to incorporate GAN features in fake sample synthesizing. The second is that we design a Bone-shaped dual auto-encoder with a powerful image texture filter bridged in between to aid forgery detection and localization in two streams. Reconstruction learning in the color stream avoids over-fitting in specific textures and imposes learning color-related features. Moreover, the GAN fingerprints harbored within the output image can be in furtherance of AIM and produce texture-discrepant samples for further training. The noise stream takes input processed by the proposed texture filter to focus on noise perspective and predict forgery region localization, subjecting to the constraint of mask label produced by AIM. We conduct extensive experiments on multiple benchmark datasets and the superior performance has proven the effectiveness of AIM-Bone and its advantage against current state-of-the-art methods. Our source code is available at https://github.com/heart74/AIM-Bone.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
森诺发布了新的文献求助10
1秒前
桐桐应助默默善愁采纳,获得10
1秒前
ll完成签到,获得积分10
2秒前
oboul发布了新的文献求助10
3秒前
啦啦啦发布了新的文献求助10
4秒前
4秒前
脑洞疼应助吉普赛大青蛙采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
kyo驳回了丘比特应助
9秒前
科研式发布了新的文献求助10
12秒前
12秒前
RA发布了新的文献求助80
12秒前
123发布了新的文献求助10
14秒前
SciGPT应助oboul采纳,获得10
14秒前
科研通AI6应助是我采纳,获得10
15秒前
16秒前
16秒前
JamesPei应助山谷采纳,获得10
16秒前
周健完成签到,获得积分10
17秒前
17秒前
葡萄成熟时完成签到 ,获得积分10
18秒前
细小发布了新的文献求助10
18秒前
20秒前
Ava应助周涨杰采纳,获得10
20秒前
cL完成签到 ,获得积分10
20秒前
syalonyui发布了新的文献求助10
21秒前
小蘑菇应助深藏blue采纳,获得10
22秒前
爆米花应助壮观人达采纳,获得10
24秒前
syalonyui完成签到,获得积分10
25秒前
烂漫的访天完成签到,获得积分10
25秒前
27秒前
28秒前
Eli完成签到 ,获得积分10
28秒前
Akim应助王津丹采纳,获得10
28秒前
小歪完成签到,获得积分10
28秒前
bubble完成签到 ,获得积分10
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457595
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292551
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458671
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343