Federated Unlearning Model Recovery in Data with Skewed Label Distributions

计算机科学 计量经济学 数学
作者
Xinrui Yu,Wenbin Pei,Bing Xue,Qiang Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.13466
摘要

In federated learning, federated unlearning is a technique that provides clients with a rollback mechanism that allows them to withdraw their data contribution without training from scratch. However, existing research has not considered scenarios with skewed label distributions. Unfortunately, the unlearning of a client with skewed data usually results in biased models and makes it difficult to deliver high-quality service, complicating the recovery process. This paper proposes a recovery method of federated unlearning with skewed label distributions. Specifically, we first adopt a strategy that incorporates oversampling with deep learning to supplement the skewed class data for clients to perform recovery training, therefore enhancing the completeness of their local datasets. Afterward, a density-based denoising method is applied to remove noise from the generated data, further improving the quality of the remaining clients' datasets. Finally, all the remaining clients leverage the enhanced local datasets and engage in iterative training to effectively restore the performance of the unlearning model. Extensive evaluations on commonly used federated learning datasets with varying degrees of skewness show that our method outperforms baseline methods in restoring the performance of the unlearning model, particularly regarding accuracy on the skewed class.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wh2740发布了新的文献求助10
2秒前
yyy发布了新的文献求助10
3秒前
916应助ycyang采纳,获得10
3秒前
xl关闭了xl文献求助
5秒前
5秒前
ddog完成签到,获得积分10
6秒前
所所应助cjl0413采纳,获得10
8秒前
8秒前
陆千万完成签到,获得积分10
9秒前
10秒前
彭于晏应助泡泡采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
SccS完成签到,获得积分20
13秒前
14秒前
14秒前
shtatbf发布了新的文献求助10
15秒前
15秒前
无花果应助qcf采纳,获得10
16秒前
wy完成签到,获得积分10
17秒前
核桃发布了新的文献求助30
18秒前
SccS发布了新的文献求助10
18秒前
18秒前
提莫蘑菇发布了新的文献求助10
18秒前
ycyang完成签到,获得积分10
20秒前
接好运发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
21秒前
21秒前
小兔子完成签到 ,获得积分10
22秒前
慕青应助流沙包采纳,获得10
22秒前
英俊的铭应助silong采纳,获得10
22秒前
yl发布了新的文献求助10
23秒前
深情安青应助BAi采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982424
求助须知:如何正确求助?哪些是违规求助? 3526056
关于积分的说明 11230222
捐赠科研通 3263911
什么是DOI,文献DOI怎么找? 1801722
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767