清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Approaches in High Myopia: Systematic Review and Meta-Analysis

荟萃分析 青光眼 接收机工作特性 医学 梅德林 系统回顾 机器学习 临床实习 人工智能 眼科 计算机科学 内科学 物理疗法 政治学 法学
作者
Huiyi Zuo,Baoyu Huang,Jian He,Fang Li,Mei‐Hua Huang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e57644-e57644 被引量:2
标识
DOI:10.2196/57644
摘要

Background In recent years, with the rapid development of machine learning (ML), it has gained widespread attention from researchers in clinical practice. ML models appear to demonstrate promising accuracy in the diagnosis of complex diseases, as well as in predicting disease progression and prognosis. Some studies have applied it to ophthalmology, primarily for the diagnosis of pathologic myopia and high myopia-associated glaucoma, as well as for predicting the progression of high myopia. ML-based detection still requires evidence-based validation to prove its accuracy and feasibility. Objective This study aims to discern the performance of ML methods in detecting high myopia and pathologic myopia in clinical practice, thereby providing evidence-based support for the future development and refinement of intelligent diagnostic or predictive tools. Methods PubMed, Cochrane, Embase, and Web of Science were thoroughly retrieved up to September 3, 2023. The prediction model risk of bias assessment tool was leveraged to appraise the risk of bias in the eligible studies. The meta-analysis was implemented using a bivariate mixed-effects model. In the validation set, subgroup analyses were conducted based on the ML target events (diagnosis and prediction of high myopia and diagnosis of pathological myopia and high myopia-associated glaucoma) and modeling methods. Results This study ultimately included 45 studies, of which 32 were used for quantitative meta-analysis. The meta-analysis results unveiled that for the diagnosis of pathologic myopia, the summary receiver operating characteristic (SROC), sensitivity, and specificity of ML were 0.97 (95% CI 0.95-0.98), 0.91 (95% CI 0.89-0.92), and 0.95 (95% CI 0.94-0.97), respectively. Specifically, deep learning (DL) showed an SROC of 0.97 (95% CI 0.95-0.98), sensitivity of 0.92 (95% CI 0.90-0.93), and specificity of 0.96 (95% CI 0.95-0.97), while conventional ML (non-DL) showed an SROC of 0.86 (95% CI 0.75-0.92), sensitivity of 0.77 (95% CI 0.69-0.84), and specificity of 0.85 (95% CI 0.75-0.92). For the diagnosis and prediction of high myopia, the SROC, sensitivity, and specificity of ML were 0.98 (95% CI 0.96-0.99), 0.94 (95% CI 0.90-0.96), and 0.94 (95% CI 0.88-0.97), respectively. For the diagnosis of high myopia-associated glaucoma, the SROC, sensitivity, and specificity of ML were 0.96 (95% CI 0.94-0.97), 0.92 (95% CI 0.85-0.96), and 0.88 (95% CI 0.67-0.96), respectively. Conclusions ML demonstrated highly promising accuracy in diagnosing high myopia and pathologic myopia. Moreover, based on the limited evidence available, we also found that ML appeared to have favorable accuracy in predicting the risk of developing high myopia in the future. DL can be used as a potential method for intelligent image processing and intelligent recognition, and intelligent examination tools can be developed in subsequent research to provide help for areas where medical resources are scarce. Trial Registration PROSPERO CRD42023470820; https://tinyurl.com/2xexp738
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈俊雷完成签到 ,获得积分10
23秒前
无道则愚完成签到 ,获得积分10
25秒前
27秒前
Sunyidan完成签到,获得积分10
30秒前
燕子发布了新的文献求助30
33秒前
lorentzh完成签到,获得积分10
35秒前
ceeray23发布了新的文献求助20
35秒前
wushuimei完成签到 ,获得积分10
36秒前
su完成签到 ,获得积分0
36秒前
zxq完成签到 ,获得积分10
40秒前
燕子完成签到,获得积分20
41秒前
叁月二完成签到 ,获得积分10
43秒前
Akim应助Lynne采纳,获得10
48秒前
chen完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
55秒前
56秒前
1分钟前
Lynne发布了新的文献求助10
1分钟前
小刘同学发布了新的文献求助10
1分钟前
P_Chem完成签到,获得积分10
1分钟前
旅人完成签到 ,获得积分10
1分钟前
尼古拉耶维奇完成签到 ,获得积分10
1分钟前
喻初原完成签到 ,获得积分10
1分钟前
闪电侠完成签到 ,获得积分10
1分钟前
小刘同学发布了新的文献求助10
1分钟前
jesi完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
飞龙在天完成签到 ,获得积分10
1分钟前
JESI完成签到,获得积分10
2分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
2分钟前
沐沐心完成签到 ,获得积分10
2分钟前
mojito完成签到 ,获得积分10
2分钟前
某某完成签到 ,获得积分10
2分钟前
平凡世界完成签到 ,获得积分10
2分钟前
new1完成签到,获得积分10
2分钟前
佳期如梦完成签到 ,获得积分10
2分钟前
yushiolo完成签到 ,获得积分10
2分钟前
Ray完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516379
求助须知:如何正确求助?哪些是违规求助? 4609345
关于积分的说明 14514830
捐赠科研通 4545998
什么是DOI,文献DOI怎么找? 2491038
邀请新用户注册赠送积分活动 1472822
关于科研通互助平台的介绍 1444706