Evaluating Bard Gemini Pro and GPT-4 Vision Against Student Performance in Medical Visual Question Answering: Comparative Case Study

Python(编程语言) 德国的 可视化 生物统计学 计算机科学 医学教育 人工智能 医学 心理学 病理 地理 公共卫生 程序设计语言 考古
作者
Jonas Roos,Ron Martin,Robert Kaczmarczyk
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:8: e57592-e57592
标识
DOI:10.2196/57592
摘要

Abstract Background The rapid development of large language models (LLMs) such as OpenAI’s ChatGPT has significantly impacted medical research and education. These models have shown potential in fields ranging from radiological imaging interpretation to medical licensing examination assistance. Recently, LLMs have been enhanced with image recognition capabilities. Objective This study aims to critically examine the effectiveness of these LLMs in medical diagnostics and training by assessing their accuracy and utility in answering image-based questions from medical licensing examinations. Methods This study analyzed 1070 image-based multiple-choice questions from the AMBOSS learning platform, divided into 605 in English and 465 in German. Customized prompts in both languages directed the models to interpret medical images and provide the most likely diagnosis. Student performance data were obtained from AMBOSS, including metrics such as the “student passed mean” and “majority vote.” Statistical analysis was conducted using Python (Python Software Foundation), with key libraries for data manipulation and visualization. Results GPT-4 1106 Vision Preview (OpenAI) outperformed Bard Gemini Pro (Google), correctly answering 56.9% (609/1070) of questions compared to Bard’s 44.6% (477/1070), a statistically significant difference ( χ 2 ₁=32.1, P <.001). However, GPT-4 1106 left 16.1% (172/1070) of questions unanswered, significantly higher than Bard’s 4.1% (44/1070; χ 2 ₁=83.1, P <.001). When considering only answered questions, GPT-4 1106’s accuracy increased to 67.8% (609/898), surpassing both Bard (477/1026, 46.5%; χ 2 ₁=87.7, P <.001) and the student passed mean of (674/1070, SE 1.48%; χ 2 ₁=4.8, P =.03). Language-specific analysis revealed both models performed better in German than English, with GPT-4 1106 showing greater accuracy in German (282/465, 60.65% vs 327/605, 54.1%; χ 2 ₁=4.4, P =.04) and Bard Gemini Pro exhibiting a similar trend (255/465, 54.8% vs 222/605, 36.7%; χ 2 ₁=34.3, P <.001). The student majority vote achieved an overall accuracy of 94.5% (1011/1070), significantly outperforming both artificial intelligence models (GPT-4 1106: χ 2 ₁=408.5, P <.001; Bard Gemini Pro: χ 2 ₁=626.6, P <.001). Conclusions Our study shows that GPT-4 1106 Vision Preview and Bard Gemini Pro have potential in medical visual question-answering tasks and to serve as a support for students. However, their performance varies depending on the language used, with a preference for German. They also have limitations in responding to non-English content. The accuracy rates, particularly when compared to student responses, highlight the potential of these models in medical education, yet the need for further optimization and understanding of their limitations in diverse linguistic contexts remains critical.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
power完成签到,获得积分10
1秒前
9977发布了新的文献求助10
5秒前
牟凤发布了新的文献求助10
7秒前
空中风也完成签到 ,获得积分10
9秒前
落后紫夏完成签到,获得积分10
10秒前
FashionBoy应助不喜采纳,获得10
11秒前
15秒前
9977完成签到,获得积分10
15秒前
21秒前
要减肥的乐双完成签到 ,获得积分10
22秒前
小胖砸完成签到 ,获得积分10
22秒前
CipherSage应助白开水采纳,获得10
23秒前
小白完成签到 ,获得积分10
24秒前
默默的念芹完成签到 ,获得积分10
25秒前
不喜发布了新的文献求助10
25秒前
小柯完成签到,获得积分10
30秒前
科研通AI5应助zzznznnn采纳,获得10
32秒前
32秒前
38秒前
Lucas应助科研通管家采纳,获得10
39秒前
斯文败类应助科研通管家采纳,获得10
39秒前
桐桐应助科研通管家采纳,获得10
39秒前
CipherSage应助科研通管家采纳,获得10
39秒前
共享精神应助科研通管家采纳,获得10
39秒前
搜集达人应助科研通管家采纳,获得10
39秒前
tt完成签到,获得积分10
39秒前
彭于晏应助科研通管家采纳,获得10
40秒前
英姑应助科研通管家采纳,获得10
40秒前
赘婿应助科研通管家采纳,获得10
40秒前
深情安青应助科研通管家采纳,获得10
40秒前
英姑应助科研通管家采纳,获得10
40秒前
深情安青应助科研通管家采纳,获得10
40秒前
田様应助科研通管家采纳,获得10
40秒前
隐形曼青应助科研通管家采纳,获得10
40秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
41秒前
溜了溜了完成签到,获得积分10
42秒前
上官若男应助alooof采纳,获得10
43秒前
wssamuel完成签到 ,获得积分10
46秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211237
捐赠科研通 3038044
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098