Effects of heavy metal exposure on hypertension: A machine learning modeling approach

随机森林 多层感知器 决策树 阿达布思 支持向量机 泌尿系统 人工智能 Boosting(机器学习) 机器学习 数学 计算机科学 统计 医学 内科学 人工神经网络
作者
Wenxiang Li,Guangyi Huang,Ningning Tang,Peng Lu,Li Jiang,Jian Lv,Yuanjun Qin,Yunru Lin,Fan Xu,Daizai Lei
出处
期刊:Chemosphere [Elsevier]
卷期号:337: 139435-139435 被引量:44
标识
DOI:10.1016/j.chemosphere.2023.139435
摘要

Heavy metal exposure is a common risk factor for hypertension. To develop an interpretable predictive machine learning (ML) model for hypertension based on levels of heavy metal exposure, data from the NHANES (2003-2016) were employed. Random forest (RF), support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), ridge regression (RR), AdaBoost (AB), gradient boosting decision tree (GBDT), voting classifier (VC), and K-nearest neighbour (KNN) algorithms were utilized to generate an optimal predictive model for hypertension. Three interpretable methods, the permutation feature importance analysis, partial dependence plot (PDP), and Shapley additive explanations (SHAP) methods, were integrated into a pipeline and embedded in ML for model interpretation. A total of 9005 eligible individuals were randomly allocated into two distinct sets for predictive model training and validation. The results showed that among the predictive models, the RF model demonstrated the highest performance, achieving an accuracy rate of 77.40% in the validation set. The AUC and F1 score for the model were 0.84 and 0.76, respectively. Blood Pb, urinary Cd, urinary Tl, and urinary Co levels were identified as the main influencers of hypertension, and their contribution weights were 0.0504 ± 0.0482, 0.0389 ± 0.0256, 0.0307 ± 0.0179, and 0.0296 ± 0.0162, respectively. Blood Pb (0.55-2.93 μg/dL) and urinary Cd (0.06-0.15 μg/L) levels exhibited the most pronounced upwards trend with the risk of hypertension within a specific value range, while urinary Tl (0.06-0.26 μg/L) and urinary Co (0.02-0.32 μg/L) levels demonstrated a declining trend with hypertension. The findings on the synergistic effects indicated that Pb and Cd were the primary determinants of hypertension. Our findings underscore the predictive value of heavy metals for hypertension. By utilizing interpretable methods, we discerned that Pb, Cd, Tl, and Co emerged as noteworthy contributors within the predictive model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
swordlee发布了新的文献求助10
刚刚
1秒前
留白完成签到,获得积分10
1秒前
季博常发布了新的文献求助10
1秒前
1秒前
2秒前
jason发布了新的文献求助10
2秒前
liangliang完成签到,获得积分10
2秒前
3秒前
3秒前
xgrr完成签到 ,获得积分10
3秒前
4秒前
芭比爱完成签到,获得积分10
4秒前
4秒前
安详的三颜完成签到,获得积分10
4秒前
4秒前
4秒前
hh完成签到,获得积分10
4秒前
5秒前
西科Jeremy发布了新的文献求助10
5秒前
熬夜拜拜发布了新的文献求助10
6秒前
kirin发布了新的文献求助10
6秒前
DT完成签到,获得积分10
6秒前
王小龙发布了新的文献求助20
7秒前
努力学习冲冲冲应助shi hui采纳,获得10
7秒前
Jasper应助敲敲采纳,获得10
7秒前
8秒前
8秒前
10秒前
学术菜鸡123完成签到,获得积分10
10秒前
Jasper应助辛夷采纳,获得10
10秒前
aldehyde应助李沛书采纳,获得10
10秒前
善学以致用应助李沛书采纳,获得10
10秒前
ding应助feifei264837采纳,获得10
10秒前
LL发布了新的文献求助10
10秒前
orixero应助江书怡采纳,获得10
10秒前
10秒前
小猫奶醉发布了新的文献求助30
11秒前
热心冷亦完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402507
求助须知:如何正确求助?哪些是违规求助? 4521132
关于积分的说明 14084150
捐赠科研通 4435162
什么是DOI,文献DOI怎么找? 2434563
邀请新用户注册赠送积分活动 1426697
关于科研通互助平台的介绍 1405496