Effects of heavy metal exposure on hypertension: A machine learning modeling approach

随机森林 多层感知器 决策树 阿达布思 支持向量机 泌尿系统 人工智能 Boosting(机器学习) 机器学习 数学 计算机科学 统计 医学 内科学 人工神经网络
作者
Wenxiang Li,Guangyi Huang,Ningning Tang,Peng Lu,Li Jiang,Jian Lv,Yuanjun Qin,Yunru Lin,Fan Xu,Daizai Lei
出处
期刊:Chemosphere [Elsevier BV]
卷期号:337: 139435-139435 被引量:25
标识
DOI:10.1016/j.chemosphere.2023.139435
摘要

Heavy metal exposure is a common risk factor for hypertension. To develop an interpretable predictive machine learning (ML) model for hypertension based on levels of heavy metal exposure, data from the NHANES (2003-2016) were employed. Random forest (RF), support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), ridge regression (RR), AdaBoost (AB), gradient boosting decision tree (GBDT), voting classifier (VC), and K-nearest neighbour (KNN) algorithms were utilized to generate an optimal predictive model for hypertension. Three interpretable methods, the permutation feature importance analysis, partial dependence plot (PDP), and Shapley additive explanations (SHAP) methods, were integrated into a pipeline and embedded in ML for model interpretation. A total of 9005 eligible individuals were randomly allocated into two distinct sets for predictive model training and validation. The results showed that among the predictive models, the RF model demonstrated the highest performance, achieving an accuracy rate of 77.40% in the validation set. The AUC and F1 score for the model were 0.84 and 0.76, respectively. Blood Pb, urinary Cd, urinary Tl, and urinary Co levels were identified as the main influencers of hypertension, and their contribution weights were 0.0504 ± 0.0482, 0.0389 ± 0.0256, 0.0307 ± 0.0179, and 0.0296 ± 0.0162, respectively. Blood Pb (0.55-2.93 μg/dL) and urinary Cd (0.06-0.15 μg/L) levels exhibited the most pronounced upwards trend with the risk of hypertension within a specific value range, while urinary Tl (0.06-0.26 μg/L) and urinary Co (0.02-0.32 μg/L) levels demonstrated a declining trend with hypertension. The findings on the synergistic effects indicated that Pb and Cd were the primary determinants of hypertension. Our findings underscore the predictive value of heavy metals for hypertension. By utilizing interpretable methods, we discerned that Pb, Cd, Tl, and Co emerged as noteworthy contributors within the predictive model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
svaair完成签到,获得积分10
1秒前
maodianandme发布了新的文献求助10
1秒前
酷波er应助Zzzzccc采纳,获得10
4秒前
TWT发布了新的文献求助10
4秒前
Ashley发布了新的文献求助10
10秒前
番番完成签到,获得积分10
12秒前
fan完成签到 ,获得积分10
13秒前
15秒前
高是个科研狗完成签到 ,获得积分10
17秒前
大个应助Gakay采纳,获得10
17秒前
18秒前
fafa发布了新的文献求助10
18秒前
dennisysz发布了新的文献求助10
21秒前
21秒前
是否发布了新的文献求助10
22秒前
23秒前
mia005应助郭振鹏采纳,获得100
26秒前
xiaixax完成签到,获得积分10
28秒前
30秒前
31秒前
方1111发布了新的文献求助10
36秒前
37秒前
爱笑千万完成签到 ,获得积分20
39秒前
科研通AI5应助melenda采纳,获得10
40秒前
41秒前
葛鲁发布了新的文献求助10
41秒前
42秒前
结实凌瑶完成签到 ,获得积分10
43秒前
君君发布了新的文献求助10
45秒前
45秒前
星辰大海应助DreamMaker采纳,获得10
45秒前
bkagyin应助是否采纳,获得10
45秒前
lbt完成签到,获得积分20
46秒前
Gakay发布了新的文献求助10
46秒前
49秒前
科研通AI5应助小ZZ采纳,获得10
51秒前
54秒前
香蕉觅云应助hyg采纳,获得10
57秒前
塔吉普雷克矛盾体完成签到,获得积分10
58秒前
田様应助给好评采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133