Effects of heavy metal exposure on hypertension: A machine learning modeling approach

随机森林 多层感知器 决策树 阿达布思 支持向量机 泌尿系统 人工智能 Boosting(机器学习) 机器学习 数学 计算机科学 统计 医学 内科学 人工神经网络
作者
Wenxiang Li,Guangyi Huang,Ningning Tang,Peng Lu,Li Jiang,Jian Lv,Yuanjun Qin,Yunru Lin,Fan Xu,Daizai Lei
出处
期刊:Chemosphere [Elsevier]
卷期号:337: 139435-139435 被引量:49
标识
DOI:10.1016/j.chemosphere.2023.139435
摘要

Heavy metal exposure is a common risk factor for hypertension. To develop an interpretable predictive machine learning (ML) model for hypertension based on levels of heavy metal exposure, data from the NHANES (2003-2016) were employed. Random forest (RF), support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), ridge regression (RR), AdaBoost (AB), gradient boosting decision tree (GBDT), voting classifier (VC), and K-nearest neighbour (KNN) algorithms were utilized to generate an optimal predictive model for hypertension. Three interpretable methods, the permutation feature importance analysis, partial dependence plot (PDP), and Shapley additive explanations (SHAP) methods, were integrated into a pipeline and embedded in ML for model interpretation. A total of 9005 eligible individuals were randomly allocated into two distinct sets for predictive model training and validation. The results showed that among the predictive models, the RF model demonstrated the highest performance, achieving an accuracy rate of 77.40% in the validation set. The AUC and F1 score for the model were 0.84 and 0.76, respectively. Blood Pb, urinary Cd, urinary Tl, and urinary Co levels were identified as the main influencers of hypertension, and their contribution weights were 0.0504 ± 0.0482, 0.0389 ± 0.0256, 0.0307 ± 0.0179, and 0.0296 ± 0.0162, respectively. Blood Pb (0.55-2.93 μg/dL) and urinary Cd (0.06-0.15 μg/L) levels exhibited the most pronounced upwards trend with the risk of hypertension within a specific value range, while urinary Tl (0.06-0.26 μg/L) and urinary Co (0.02-0.32 μg/L) levels demonstrated a declining trend with hypertension. The findings on the synergistic effects indicated that Pb and Cd were the primary determinants of hypertension. Our findings underscore the predictive value of heavy metals for hypertension. By utilizing interpretable methods, we discerned that Pb, Cd, Tl, and Co emerged as noteworthy contributors within the predictive model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
114555发布了新的文献求助10
刚刚
orixero应助抽坎填离采纳,获得10
刚刚
1秒前
1秒前
CodeCraft应助燕不言采纳,获得10
1秒前
可可完成签到,获得积分20
2秒前
甜甜万宝路完成签到,获得积分10
2秒前
Aaron_Chia完成签到 ,获得积分10
2秒前
son完成签到,获得积分10
3秒前
王提发布了新的文献求助10
3秒前
ce完成签到,获得积分10
3秒前
lcy发布了新的文献求助10
3秒前
坦率的从丹完成签到 ,获得积分10
3秒前
4秒前
66669发布了新的文献求助10
4秒前
TH完成签到 ,获得积分10
4秒前
星辰漫步发布了新的文献求助10
5秒前
南枝焙雪发布了新的文献求助10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
四羟基合铝酸钾完成签到,获得积分10
6秒前
1111111111111完成签到,获得积分10
7秒前
天天快乐应助一叶舟采纳,获得10
7秒前
林林完成签到,获得积分10
8秒前
8秒前
羊水彤发布了新的文献求助10
9秒前
9秒前
小铭完成签到,获得积分10
10秒前
我是老大应助Anson采纳,获得10
10秒前
lulu发布了新的文献求助10
10秒前
10秒前
轨迹应助快乐再出发采纳,获得50
10秒前
bkagyin应助无辜的笑萍采纳,获得10
11秒前
王璐完成签到,获得积分20
13秒前
万能图书馆应助WANGJD采纳,获得10
13秒前
槐序二三完成签到,获得积分10
13秒前
zzz发布了新的文献求助10
13秒前
66669完成签到,获得积分10
14秒前
月月完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659634
求助须知:如何正确求助?哪些是违规求助? 4829587
关于积分的说明 15087769
捐赠科研通 4818327
什么是DOI,文献DOI怎么找? 2578595
邀请新用户注册赠送积分活动 1533172
关于科研通互助平台的介绍 1491902