控制理论(社会学)
内环
机器人
弹道
奇异摄动
Lyapunov稳定性
控制器(灌溉)
关节刚度
控制工程
跟踪(教育)
计算机科学
李雅普诺夫函数
人工神经网络
职位(财务)
刚度
跟踪误差
自适应控制
工程类
人工智能
控制(管理)
数学
非线性系统
物理
教育学
数学分析
结构工程
生物
心理学
量子力学
农学
财务
天文
经济
作者
Xinbo Yu,Sisi Liu,Shuang Zhang,Wei He,Haifeng Huang
标识
DOI:10.1109/tie.2023.3290250
摘要
In this paper, a control scheme of the flexible joint robot contacting with an unknown environment is proposed to realize force tracking. Tracking performance is ensured by designing the force-based outer loop and the position-based inner loop of the controller. The reference trajectory is obtained from the outer loop based on interaction force error and the estimated environment stiffness. The inner loop controller of the flexible joint robot based on the singular perturbation method is designed to achieve precise position tracking performance, and neural network is utilized to compensate for uncertainties in robotic dynamics. The stability of the control system is strictly proven by the Lyapunov method. The effectiveness of the proposed method is verified by simulations and experiments on the flexible joint robot.
科研通智能强力驱动
Strongly Powered by AbleSci AI