Self-Guided Partial Graph Propagation for Incomplete Multiview Clustering

利用 计算机科学 图形 数据挖掘 一致性(知识库) 聚类分析 理论计算机科学 缺少数据 正规化(语言学) 局部一致性 数据一致性 人工智能 机器学习 操作系统 概率逻辑 约束满足 计算机安全
作者
Cheng Liu,Rui Li,Si Wu,Hangjun Che,Dazhi Jiang,Zhiwen Yu,Hau−San Wong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 10803-10816 被引量:20
标识
DOI:10.1109/tnnls.2023.3244021
摘要

In this work, we study a more realistic challenging scenario in multiview clustering (MVC), referred to as incomplete MVC (IMVC) where some instances in certain views are missing. The key to IMVC is how to adequately exploit complementary and consistency information under the incompleteness of data. However, most existing methods address the incompleteness problem at the instance level and they require sufficient information to perform data recovery. In this work, we develop a new approach to facilitate IMVC based on the graph propagation perspective. Specifically, a partial graph is used to describe the similarity of samples for incomplete views, such that the issue of missing instances can be translated into the missing entries of the partial graph. In this way, a common graph can be adaptively learned to self-guide the propagation process by exploiting the consistency information, and the propagated graph of each view is in turn used to refine the common self-guided graph in an iterative manner. Thus, the associated missing entries can be inferred through graph propagation by exploiting the consistency information across all views. On the other hand, existing approaches focus on the consistency structure only, and the complementary information has not been sufficiently exploited due to the data incompleteness issue. By contrast, under the proposed graph propagation framework, an exclusive regularization term can be naturally adopted to exploit the complementary information in our method. Extensive experiments demonstrate the effectiveness of the proposed method in comparison with state-of-the-art methods. The source code of our method is available at the https://github.com/CLiu272/TNNLS-PGP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弟斯拉发布了新的文献求助10
刚刚
JamesPei应助小丸子呀采纳,获得10
刚刚
3秒前
乔心发布了新的文献求助10
3秒前
Ava应助Serein采纳,获得10
4秒前
霸气的思柔完成签到,获得积分10
7秒前
无花果应助乔心采纳,获得10
7秒前
7秒前
shendu完成签到 ,获得积分10
8秒前
8秒前
9秒前
mawanyu发布了新的文献求助10
10秒前
ppf发布了新的文献求助10
12秒前
努力向流域靠近完成签到,获得积分10
14秒前
小丸子呀发布了新的文献求助10
15秒前
13击完成签到,获得积分10
15秒前
赘婿应助wdr采纳,获得10
17秒前
诚心语琴关注了科研通微信公众号
18秒前
ppf完成签到,获得积分20
19秒前
20秒前
土豪的摩托完成签到 ,获得积分10
25秒前
哈哈哈完成签到 ,获得积分10
26秒前
Serein发布了新的文献求助10
27秒前
阔达代芹完成签到,获得积分10
29秒前
32秒前
文瑄完成签到 ,获得积分0
33秒前
日出发布了新的文献求助10
36秒前
yalyn完成签到,获得积分10
36秒前
40秒前
酷炫画板完成签到 ,获得积分10
41秒前
41秒前
43秒前
wdr发布了新的文献求助10
46秒前
ECHO完成签到,获得积分10
46秒前
e746700020发布了新的文献求助10
48秒前
哈哈完成签到,获得积分10
49秒前
49秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
香蕉觅云应助科研通管家采纳,获得10
52秒前
CodeCraft应助科研通管家采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781878
求助须知:如何正确求助?哪些是违规求助? 3327449
关于积分的说明 10231282
捐赠科研通 3042334
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799446
科研通“疑难数据库(出版商)”最低求助积分说明 758808