亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Direct visual servoing based on a new basis set and switching strategy

视觉伺服 基础(线性代数) 集合(抽象数据类型) 人工智能 计算机科学 计算机视觉 控制理论(社会学) 机器人 控制(管理) 数学 几何学 程序设计语言
作者
Yecan Yin,Xiangfei Li,Huan Zhao,Wenbo Ning,Yiwei Wang,Han‐Fei Ding
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
标识
DOI:10.1177/02783649251318359
摘要

Direct visual servoing considers all pixel intensities of the entire image as inputs for robot control. Because of the high dimensionality of the image space, it achieves high convergence accuracy at the cost of low convergence domain. Recent work on the direct visual servoing decomposes the images into different signal spaces. Although a large convergence domain can be obtained, their other performance, such as convergence rate, convergence accuracy, and robustness under illumination variations, have been reduced. In other words, there exists an inevitable trade-off between the convergence domain and the other performance. To mitigate the trade-off, by constructing a new basis set with spatial-frequency properties and considering their numerical relationship during switching process, this article proposes a new and effective direct visual servoing approach. First of all, a new set of bases is specially constructed for the visual servoing rather than leveraging existing bases or transformations, and the analytical relationship between the original loss function and the transformed one is derived for the first time. Then, considering that different bases have different convergence properties, an effective switching control strategy is designed to select an appropriate basis at different states. Ultimately, a series of simulations and experiments are carried out, and the results demonstrate that the proposed servoing approach significantly outperforms the state-of-the-art approaches in terms of convergence domain, convergence rate, convergence accuracy, robustness under illumination variations, robustness under partial occlusions, and some three-dimensional scenes. In addition, the proposed approach can adapt well to different camera parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yan完成签到 ,获得积分10
16秒前
实验体8567号完成签到,获得积分10
40秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
清秀的之桃完成签到 ,获得积分10
1分钟前
欣欣子完成签到 ,获得积分10
1分钟前
阿尔法贝塔完成签到 ,获得积分10
1分钟前
2分钟前
lanbing802发布了新的文献求助10
2分钟前
ding应助lanbing802采纳,获得10
2分钟前
2分钟前
郭郭9706发布了新的文献求助10
2分钟前
chiazy完成签到 ,获得积分10
3分钟前
善学以致用应助从容栾采纳,获得10
3分钟前
郭郭9706完成签到,获得积分20
3分钟前
Wu完成签到,获得积分20
4分钟前
Wu发布了新的文献求助10
4分钟前
JamesPei应助mili采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
情怀应助d00007采纳,获得10
5分钟前
mili发布了新的文献求助10
6分钟前
虚心完成签到 ,获得积分10
6分钟前
6分钟前
从容栾发布了新的文献求助10
6分钟前
Obliviate完成签到,获得积分10
6分钟前
Jasmine完成签到,获得积分10
7分钟前
he0570完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
wangyu1993777发布了新的文献求助10
8分钟前
lanbing802发布了新的文献求助10
8分钟前
小二郎应助lanbing802采纳,获得10
8分钟前
mili完成签到,获得积分20
8分钟前
8分钟前
wangyu1993777完成签到,获得积分20
9分钟前
9分钟前
J_W_发布了新的文献求助10
9分钟前
he0570发布了新的文献求助10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782683
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234369
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994