ADMM-ESINet: A Deep Unrolling Network for EEG Extended Source Imaging

计算机科学 脑电图 人工智能 医学影像学 神经科学 心理学
作者
Ke Liu,Hang Jiang,Yang Hu,Jun Zhang,Zhenghui Gu,Zhuliang Yu,Y. Zhang,Bin Xiao,Wei Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3568648
摘要

Electroencephalography (EEG) source imaging (ESI) methods aim to reconstruct cortical sources from scalp EEG signals, a crucial task for understanding the normal brain as well as brain disorders. Traditional model-driven ESI methods face challenges in real-time reconstruction, while deep neural network (DNN)-based ESI methods often struggle with generalization to new data. To address these issues, we propose ADMM-ESINet, a novel deep unfolding neural network for robust and efficient reconstruction of EEG extended sources. ADMM-ESINet leverages a structured sparsity constraint within a regularization framework and employs the Alternating Direction Method of Multipliers (ADMM) to achieve iterative solutions. By unrolling the ADMM algorithm into a cascaded network architecture, ADMM-ESINet effectively integrates prior knowledge, enabling end-to-end, real-time ESI. Crucially, both the regularization parameters and the spatial transform operator are learned directly from the training data. Numerical results demonstrate that ADMM-ESINet surpasses traditional DNN-based methods in generalization ability and accurately reconstructs the location, extent, and temporal dynamics of extended sources, establishing ADMM-ESINet as a promising method for real-time ESI. The source code for ADMM-ESINet is available at https://github.com/hangj-cache/ADMM-ESINet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助科研通管家采纳,获得20
刚刚
1秒前
石莫言发布了新的文献求助10
1秒前
tian发布了新的文献求助10
1秒前
2秒前
你怎么睡得着觉完成签到 ,获得积分10
3秒前
3秒前
zho应助科研通管家采纳,获得10
3秒前
俊秀的半雪完成签到,获得积分10
4秒前
4秒前
彪壮的小玉完成签到,获得积分0
5秒前
chengmin发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
yuyu发布了新的文献求助10
8秒前
hhhhh完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
龙龍龖龘发布了新的文献求助10
9秒前
9秒前
CodeCraft应助boshi采纳,获得10
10秒前
HEIKU应助刘秀的猫咪采纳,获得10
10秒前
Jasper应助清新的苑博采纳,获得10
12秒前
ysy发布了新的文献求助10
12秒前
13秒前
科研通AI5应助么么叽采纳,获得10
14秒前
爆米花应助鱼的宇宙采纳,获得10
14秒前
Christina完成签到,获得积分10
14秒前
kunkun发布了新的文献求助10
16秒前
可爱的函函应助chengmin采纳,获得10
16秒前
12rcli发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
ding应助专注的语堂采纳,获得10
18秒前
Muniira完成签到,获得积分10
19秒前
19秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829930
求助须知:如何正确求助?哪些是违规求助? 3372490
关于积分的说明 10472794
捐赠科研通 3092018
什么是DOI,文献DOI怎么找? 1701700
邀请新用户注册赠送积分活动 818590
科研通“疑难数据库(出版商)”最低求助积分说明 770975