Integrated multiomics analysis and machine learning refine neutrophil extracellular trap-related molecular subtypes and prognostic models for acute myeloid leukemia

中性粒细胞胞外陷阱 髓系白血病 髓样 医学 髓系细胞 存水弯(水管) 免疫学 计算生物学 生物 炎症 环境工程 工程类
作者
Fangmin Zhong,Fangyi Yao,Zi-Hao Wang,Jing Liu,Bo Huang,Xiaozhong Wang
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fimmu.2025.1558496
摘要

Neutrophil extracellular traps (NETs) play pivotal roles in various pathological processes. The formation of NETs is impaired in acute myeloid leukemia (AML), which can result in immunodeficiency and increased susceptibility to infection. The gene set variation analysis (GSVA) algorithm was employed for the calculation of NET score, while the consensus clustering algorithm was utilized to identify molecular subtypes. Weighted gene coexpression network analysis (WGCNA) revealed potential genes and biological pathways associated with NETs, and a total of 10 machine learning algorithms were applied to construct the optimal prognostic model. Through the analysis of multiomics data, we identified two molecular subtypes with high and low NET scores. The low-NET score subgroup exhibited increased infiltration of immune effector cells. Conversely, the high-NET score subtype presented an abundance of monocytes and M2 macrophages, accompanied by elevated expression levels of immune checkpoint genes. These findings suggest that a pronounced immunosuppressive effect is associated with a significantly worse prognosis for this subtype. The optimal risk score model was selected by employing the C-index as the criterion on the basis of training 10 machine learning algorithms on 9 multicenter AML cohorts. Survival analysis confirmed that patients with high-risk scores had considerably poorer prognoses than those with lower scores. Receiver operating characteristic (ROC) curve and Cox regression analyses further validated the strong independent prognostic value of the risk score model. The nomogram, which was constructed by integrating the risk score model and clinicopathological factors, demonstrated high accuracy in predicting the overall survival of AML patients. Moreover, patients with refractory or chemotherapy-unresponsive AML had significantly higher risk scores. By analyzing drug therapy data from in vitro AML cells, we identified a subset of drugs that demonstrated increased sensitivity in the high-risk score group. Additionally, patients with a high risk score were also predicted to exhibit a favorable response to anti-PD-1 therapy, suggesting that these individuals may derive greater benefits from immunotherapy. The NET-related signature, derived from a combination of diverse machine learning algorithms, has promising potential as a valuable tool for prognostic prediction, preventive measures, and personalized medicine in patients with AML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
九三完成签到,获得积分10
3秒前
3秒前
SXM发布了新的文献求助10
4秒前
5秒前
Jh完成签到 ,获得积分10
5秒前
5秒前
星辰大海应助123采纳,获得10
6秒前
万能图书馆应助许译匀采纳,获得10
8秒前
余俊辉发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
bksqc发布了新的文献求助20
11秒前
科研通AI5应助罗琦123采纳,获得10
12秒前
潘安完成签到,获得积分10
12秒前
Analchem发布了新的文献求助10
14秒前
意境完成签到 ,获得积分10
14秒前
ww发布了新的文献求助10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
汤朝雪完成签到 ,获得积分20
16秒前
SXM完成签到,获得积分10
17秒前
19秒前
20秒前
无聊的汲完成签到 ,获得积分10
20秒前
bksqc完成签到,获得积分10
20秒前
21秒前
长长的名字完成签到 ,获得积分10
23秒前
微眠发布了新的文献求助10
25秒前
25秒前
所所应助德芙纵向丝滑采纳,获得10
26秒前
科研通AI6应助123采纳,获得30
26秒前
zz发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
Owen应助zx采纳,获得10
29秒前
王珂发布了新的文献求助20
29秒前
zxc完成签到,获得积分10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4209178
求助须知:如何正确求助?哪些是违规求助? 3743222
关于积分的说明 11782802
捐赠科研通 3412909
什么是DOI,文献DOI怎么找? 1872920
邀请新用户注册赠送积分活动 927504
科研通“疑难数据库(出版商)”最低求助积分说明 837094