Comparative analysis of large language models in medical counseling: A focus on Helicobacter pylori infection

幽门螺杆菌感染 幽门螺杆菌 利克特量表 完备性(序理论) 拉什模型 医学 英语 心理学 统计 内科学 数学 数学教育 数学分析
作者
Qingzhou Kong,Kunping Ju,Meng Wan,Jing Liu,Xiaoqi Wu,Yueyue Li,Xiuli Zuo,Yanqing Li
出处
期刊:Helicobacter [Wiley]
卷期号:29 (1) 被引量:4
标识
DOI:10.1111/hel.13055
摘要

Abstract Background Large language models (LLMs) are promising medical counseling tools, but the reliability of responses remains unclear. We aimed to assess the feasibility of three popular LLMs as counseling tools for Helicobacter pylori infection in different counseling languages. Materials and Methods This study was conducted between November 20 and December 1, 2023. Three large language models (ChatGPT 4.0 [LLM1], ChatGPT 3.5 [LLM2], and ERNIE Bot 4.0 [LLM3]) were input 15 H. pylori related questions each, once in English and once in Chinese. Each chat was conducted using the “New Chat” function to avoid bias from correlation interference. Responses were recorded and blindly assigned to three reviewers for scoring on three established Likert scales: accuracy (ranged 1–6 point), completeness (ranged 1–3 point), and comprehensibility (ranged 1–3 point). The acceptable thresholds for the scales were set at a minimum of 4, 2, and 2, respectively. Final various source and interlanguage comparisons were made. Results The overall mean (SD) accuracy score was 4.80 (1.02), while 1.82 (0.78) for completeness score and 2.90 (0.36) for comprehensibility score. The acceptable proportions for the accuracy, completeness, and comprehensibility of the responses were 90%, 45.6%, and 100%, respectively. The acceptable proportion of overall completeness score for English responses was better than for Chinese responses ( p = 0.034). For accuracy, the English responses of LLM3 were better than the Chinese responses ( p = 0.0055). As for completeness, the English responses of LLM1 was better than the Chinese responses ( p = 0.0257). For comprehensibility, the English responses of LLM1 was better than the Chinese responses ( p = 0.0496). No differences were found between the various LLMs. Conclusions The LLMs responded satisfactorily to questions related to H. pylori infection. But further improving completeness and reliability, along with considering language nuances, is crucial for optimizing overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助粗暴的海豚采纳,获得10
1秒前
宋成为发布了新的文献求助10
1秒前
1秒前
FashionBoy应助爱吃马铃薯采纳,获得10
1秒前
科研通AI2S应助wykang采纳,获得10
2秒前
2秒前
zhendema发布了新的文献求助30
3秒前
大模型应助花痴的酒窝采纳,获得10
3秒前
4秒前
苏灿应助上上谦采纳,获得10
4秒前
大胆的问夏完成签到,获得积分10
5秒前
霸气怀蝶发布了新的文献求助10
5秒前
5秒前
兴奋的铅笔关注了科研通微信公众号
5秒前
6秒前
zhonghbush发布了新的文献求助10
6秒前
7秒前
可爱寻芹发布了新的文献求助10
7秒前
llhh2024发布了新的文献求助10
7秒前
liuying发布了新的文献求助10
7秒前
Vxfhfdhkcds完成签到 ,获得积分20
7秒前
8秒前
546469ki发布了新的文献求助10
8秒前
诸葛醉薇应助酷炫的大白采纳,获得10
9秒前
10秒前
做光催化的狗完成签到,获得积分10
10秒前
Hoooo...发布了新的文献求助10
10秒前
历代星辰发布了新的文献求助10
12秒前
12秒前
yznfly应助声子晶体_采纳,获得30
13秒前
13秒前
xian完成签到,获得积分10
13秒前
13秒前
davidvon发布了新的文献求助10
15秒前
地啦啦啦发布了新的文献求助10
15秒前
15秒前
zz发布了新的文献求助10
15秒前
15秒前
15秒前
汉堡包应助qinyu采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932803
求助须知:如何正确求助?哪些是违规求助? 3477698
关于积分的说明 10998431
捐赠科研通 3208032
什么是DOI,文献DOI怎么找? 1772652
邀请新用户注册赠送积分活动 859923
科研通“疑难数据库(出版商)”最低求助积分说明 797417