亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Rice Disease Under Complex Background Based on PSOC-DRCNet

计算机科学 人工智能 机器学习 粮食安全 过度拟合 模式识别(心理学) 农业 人工神经网络 生物 生态学
作者
Zewei Liu,Guoxiong Zhou,Wenke Zhu,Yi Chai,Liujun Li,Yanfeng Wang,Yahui Hu,Weisi Dai,Rui Liu,Lixiang Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123643-123643 被引量:10
标识
DOI:10.1016/j.eswa.2024.123643
摘要

Rice is a crucial agricultural crop, yet it frequently suffers from various diseases, leading to decreased yields and, in severe cases, crop failure. Diseases significantly affect rice growth and yield, resulting in economic losses and food security challenges. The role of image recognition in identifying rice diseases is critical in agricultural production. It enables automated and efficient detection of rice diseases, which is essential for effective management, ensuring food security and sustainable agriculture. To address issues like background noise and edge blurring in rice disease image capture, as well as challenges in determining the optimal learning rate during the training of traditional rice disease recognition networks, a novel method based on PSOC-DRCNet is proposed for rice disease recognition.. First, tto solve the problem of background interference, Dual Mode Attention (DMA) is proposed to adaptively capture meaningful regions in rice disease images. Second, the Residual Adaptive Block(RAB) is proposed, which utilizes dimensional changes and channel attention to solve edge blur problems. Then, a Cross entropy and regularized mixed Loss function (CerLoss), is proposed to optimize the learning strategy of the model in the process of processing datasets and enhance the performance and generalization ability of the model to avoid overfitting problems. Ultimately, In response to the cumbersome problem of finding the optimal learning rate, we propose using Particle Swarm Optimization Chameleon (PSOC) to find the optimal learning rate and train the PSOC-DRCNet model on our custom dataset and compare it with other existing methods and the final average classification accuracy of PSOC-DRCNet is 93.88% with an F1 score of 0.940. We compare it with other existing methods. It is proved that the average classification accuracy of our model under hyper-parameter unification is 92.65% F1 score is 0.928. We validated the PSOC-DRCNet by conducting comparative analyses with other models and through generalization experiments and module effectiveness tests. Additionally, the practicality of PSOC-DRCNet was confirmed through its application in real-world scenarios. The methods proposed in this paper successfully enable the identification of various diseases in rice leaves, offering a practical solution for incorporating deep learning into the agricultural production process. Furthermore, these findings serve as a valuable reference for disease identification in other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致飞雪完成签到 ,获得积分10
2秒前
6秒前
杨艳完成签到 ,获得积分10
14秒前
16秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
顾矜应助科研通管家采纳,获得10
24秒前
SuzhenZH完成签到,获得积分10
28秒前
朱朱子完成签到 ,获得积分10
29秒前
31秒前
31秒前
32秒前
momo发布了新的文献求助10
34秒前
果冻橙完成签到,获得积分10
36秒前
科研通AI5应助跳跃野狼采纳,获得10
37秒前
怕黑初阳发布了新的文献求助10
38秒前
在水一方应助momo采纳,获得10
39秒前
41秒前
cnbhhhhh发布了新的文献求助10
48秒前
momo完成签到,获得积分10
48秒前
48秒前
怕黑初阳完成签到,获得积分10
53秒前
54秒前
一卷钢丝球完成签到,获得积分10
58秒前
恒温失效发布了新的文献求助10
59秒前
爱静静完成签到,获得积分0
1分钟前
1分钟前
柚子完成签到 ,获得积分10
1分钟前
xxx完成签到,获得积分10
1分钟前
聪明勇敢有力气完成签到 ,获得积分10
1分钟前
酷波er应助恒温失效采纳,获得10
1分钟前
1分钟前
共享精神应助fheu采纳,获得10
1分钟前
标致飞雪发布了新的文献求助20
1分钟前
leslie发布了新的文献求助10
1分钟前
领导范儿应助cnbhhhhh采纳,获得10
1分钟前
1分钟前
1分钟前
fheu发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702