A Collaborative Self-Supervised Domain Adaptation for Low-Quality Medical Image Enhancement

计算机科学 图像质量 适应(眼睛) 分割 医学影像学 水准点(测量) 质量(理念) 人工智能 图像分割 计算机视觉 图像(数学) 模式识别(心理学) 机器学习 光学 物理 哲学 认识论 地理 大地测量学
作者
Qingshan Hou,Yaqi Wang,Peng Cao,Shuai Cheng,Linqi Lan,Jinzhu Yang,Xiaoli Liu,Osmar R. Zäıane
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2479-2494 被引量:2
标识
DOI:10.1109/tmi.2024.3367367
摘要

Medical image analysis techniques have been employed in diagnosing and screening clinical diseases. However, both poor medical image quality and illumination style inconsistency increase uncertainty in clinical decision-making, potentially resulting in clinician misdiagnosis. The majority of current image enhancement methods primarily concentrate on enhancing medical image quality by leveraging high-quality reference images, which are challenging to collect in clinical applications. In this study, we address image quality enhancement within a fully self-supervised learning setting, wherein neither high-quality images nor paired images are required. To achieve this goal, we investigate the potential of self-supervised learning combined with domain adaptation to enhance the quality of medical images without the guidance of high-quality medical images. We design a Domain Adaptation Self-supervised Quality Enhancement framework, called DASQE. More specifically, we establish multiple domains at the patch level through a designed rule-based quality assessment scheme and style clustering. To achieve image quality enhancement and maintain style consistency, we formulate the image quality enhancement as a collaborative self-supervised domain adaptation task for disentangling the low-quality factors, medical image content, and illumination style characteristics by exploring intrinsic supervision in the low-quality medical images. Finally, we perform extensive experiments on six benchmark datasets of medical images, and the experimental results demonstrate that DASQE attains state-of-the-art performance. Furthermore, we explore the impact of the proposed method on various clinical tasks, such as retinal fundus vessel/lesion segmentation, nerve fiber segmentation, polyp segmentation, skin lesion segmentation, and disease classification. The results demonstrate that DASQE is advantageous for diverse downstream image analysis tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wubobo完成签到,获得积分10
2秒前
lin完成签到,获得积分20
4秒前
树枝完成签到 ,获得积分10
5秒前
abcdefg发布了新的文献求助20
6秒前
星辰大海应助爱吃大米采纳,获得10
6秒前
雪宝宝发布了新的文献求助10
7秒前
10秒前
11秒前
无花果应助滕州笑采纳,获得10
12秒前
無期完成签到 ,获得积分10
13秒前
13秒前
zrs发布了新的文献求助30
15秒前
15秒前
15秒前
雪宝宝完成签到,获得积分10
16秒前
ZW发布了新的文献求助10
17秒前
勤恳冷雪发布了新的文献求助10
17秒前
lianqing完成签到,获得积分10
19秒前
20秒前
21秒前
24秒前
24秒前
25秒前
岁月荣耀发布了新的文献求助10
28秒前
觅云完成签到 ,获得积分10
29秒前
晶猪噜噜发布了新的文献求助10
30秒前
勤恳的向日葵完成签到,获得积分10
33秒前
jor666完成签到,获得积分10
33秒前
34秒前
TRY完成签到,获得积分10
34秒前
38秒前
38秒前
晶猪噜噜完成签到,获得积分10
43秒前
45秒前
46秒前
47秒前
ShellyHan发布了新的文献求助10
48秒前
欢呼煎蛋发布了新的文献求助30
49秒前
zeno123456完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315