Fast subsampling strategy for point cloud based on novel octree coding

计算机科学 点云 算法 八叉树 特征(语言学) 节点(物理) 人工智能 语言学 结构工程 工程类 哲学
作者
Zheng Zhen,Chengjun Wang,Bingting Zha,Haodong Liu,He Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045028-045028
标识
DOI:10.1088/1361-6501/ad1f28
摘要

Abstract Owing to the continuous expansion in data scale, the calculation, storage, and transmission of 3D data have been plagued by numerous issues. The point cloud data, in particular, often contain duplicated and anomalous points, which can hinder tasks such as measurement. To address this issue, it is crucial to utilize point cloud pre-processing methods that combine subsampling and denoising. These methods help obtain clean, evenly distributed, and compact points to enhance the accuracy of the data. In this study, an efficient point cloud subsampling method is proposed that combines point cloud denoising capabilities. This method can effectively preserve salient features while improving the quality of point cloud data. By constructing the octree structure of the point cloud, the corresponding node code is obtained according to the spatial coordinates of the point cloud, and the feature vector of the node is calculated based on the analysis of covariance. Node feature similarity is introduced to distinguish the node into feature and non-feature nodes, forming the node feature code, and the layer threshold is introduced to filter outliers. Experimental results demonstrate that our proposed algorithm has a time ratio of over four compared to the curvature-based algorithm. Additionally, it exhibits an average grey entropy that is 1.6 × e 3 lower than that of the random sampling method. And considering both time cost and subsampling effectiveness, proposed algorithm outperforms the state-of-the-art subsampling strategies, such as Approximate Intrinsic Voxel Structure and SampleNet. This approach is effective in removing noise while preserving important features, thereby reducing overall size of the point cloud. The high computational efficiency of our algorithm makes it a valuable reference for fast and precise measurements that require timeliness. It successfully addresses the challenges posed by the continuous expansion of data scale and offers significant advantages over existing subsampling methods. By improving the quality of point cloud data, our algorithm contributes to reducing complexity, enables efficient and accurate measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfang0228完成签到 ,获得积分10
2秒前
8秒前
二丙完成签到 ,获得积分10
13秒前
哇咔咔完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
justin完成签到 ,获得积分10
16秒前
眼睛大的寄容完成签到 ,获得积分10
17秒前
20秒前
寒冷寻桃完成签到 ,获得积分10
20秒前
熊雅完成签到,获得积分10
22秒前
heniancheng完成签到 ,获得积分10
28秒前
30秒前
kajikaji完成签到,获得积分10
31秒前
32秒前
chruse完成签到 ,获得积分10
36秒前
风趣的梦露完成签到 ,获得积分10
39秒前
喜悦宫苴完成签到,获得积分10
42秒前
肉肉完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
44秒前
44秒前
45秒前
46秒前
安澜应助科研通管家采纳,获得10
46秒前
47秒前
大模型应助科研通管家采纳,获得10
47秒前
47秒前
传奇3应助科研通管家采纳,获得10
47秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
47秒前
47秒前
李健应助科研通管家采纳,获得10
47秒前
47秒前
昱昱完成签到 ,获得积分10
50秒前
MISSIW完成签到,获得积分10
50秒前
MAVS完成签到,获得积分10
50秒前
严逍遥完成签到 ,获得积分10
51秒前
叶痕TNT完成签到 ,获得积分10
52秒前
hutian完成签到,获得积分10
52秒前
寒梅恋雪完成签到 ,获得积分10
54秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881677
求助须知:如何正确求助?哪些是违规求助? 3424013
关于积分的说明 10737056
捐赠科研通 3148938
什么是DOI,文献DOI怎么找? 1737701
邀请新用户注册赠送积分活动 838933
科研通“疑难数据库(出版商)”最低求助积分说明 784173